

SciKit-Learn Laboratory (SKLL)

[image: SKLL logo]

[image: _images/spacer.png]

SKLL (pronounced “skull”) provides a number of utilities to make it simpler to
run common scikit-learn experiments with pre-generated features.

There are two primary means of using SKLL: the run_experiment script
and the Python API.

Documentation

	Installation

	License

	Tutorial
	Workflow

	Titanic Example
	Create virtual environment with SKLL

	Get your data into the correct format

	Create a configuration file for the experiment

	Running your configuration file through run_experiment

	Examine the results

	IRIS Example on Binder

	Running Experiments
	General Workflow

	Feature files
	arff

	csv/tsv

	jsonlines/ndj (Recommended)

	libsvm

	Configuration file fields
	General

	Input

	Tuning

	Output

	Using run_experiment

	Output files
	Log files

	Model files

	Results files

	Prediction files

	Summary file

	Folds file

	Learning curve plots

	Integration with Weights & Biases

	Using Custom Metrics
	Writing Custom Metric Functions

	Using in Configuration Files

	Using via the API

	Utility Scripts
	compute_eval_from_predictions
	Positional Arguments

	Optional Arguments

	filter_features
	Required Arguments

	Optional Arguments

	generate_predictions
	Positional Arguments

	Optional Arguments

	join_features
	Positional Arguments

	Optional Arguments

	plot_learning_curves
	Positional Arguments

	print_model_weights
	Positional Arguments

	Optional Arguments

	skll_convert
	Positional Arguments

	Optional Arguments

	summarize_results
	Positional Arguments

	Optional Arguments

	API Documentation
	Quickstart

	config Package
	fix_json()

	load_cv_folds()

	locate_file()

	data Package
	data.featureset Module

	data.readers Module

	data.writers Module

	experiments Package

	learner Package
	Learner Class

	VotingLearner Class

	metrics Module
	correlation()

	f1_score_least_frequent()

	kappa()

	register_custom_metric()

	use_score_func()

	utils Package
	CLASSIFICATION_ONLY_METRICS

	CORRELATION_METRICS

	PROBABILISTIC_METRICS

	REGRESSION_ONLY_METRICS

	UNWEIGHTED_KAPPA_METRICS

	WEIGHTED_KAPPA_METRICS

	get_skll_logger()

	types Module
	ClassMap

	ConfusionMatrix

	FeatureDict

	FeatureDictList

	FeaturesetIterator

	FoldMapping

	IdType

	IndexIterator

	LabelType

	LearningCurveSizes

	FeatGenerator

	PathOrStr

	SparseFeatureMatrix

	ComputeEvalMetricsResults

	EvaluateTaskResults

	CrossValidateTaskResults

	VotingCrossValidateTaskResults

	Contributing
	Guidelines

	SKLL Code Overview
	Organization

	Entry Points & Workflow

	Internal Documentation
	Release Process

Indices and tables

	Index

	Module Index

	Search Page

Installation

SKLL can be installed via pip:

pip install skll

or via conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]:

conda install -c conda-forge -c ets skll

It can also be downloaded directly from
GitHub [https://github.com/EducationalTestingService/skll].

License

SKLL is distributed under the 3-clause BSD License.

Tutorial

Before doing anything below, you’ll want to install SKLL.

Workflow

In general, there are four steps to using SKLL:

	Get some data in a SKLL-compatible format.

	Create a small configuration file describing the
machine learning experiment you would like to run.

	Run that configuration file with run_experiment.

	Examine the results of the experiment.

Titanic Example

Let’s see how we can apply the basic workflow above to a simple example using
the Titanic: Machine Learning from Disaster [https://www.kaggle.com/c/titanic/]
data from Kaggle [https://www.kaggle.com].

Create virtual environment with SKLL

Before we proceed further, we need to install SKLL. The easiest way to do
this is in a virtual environment. For this tutorial, we will
use conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]
for creating our virtual environment as follows:

conda create -n skllenv -c conda-forge -c ets python=3.11 skll

This will create a new virtual environment named skllenv with the
latest release of SKLL which you can then activate by running
conda activate skllenv. Make sure to create and activate this environment
before proceeding further. Once you are done with the tutorial, you may
deactivate the virtual environment by running conda deactivate.

Get your data into the correct format

The first step is to get the Titanic data. We have already downloaded the data files
from Kaggle and included them in the
SKLL repository [https://github.com/EducationalTestingService/skll/tree/main/examples/titanic].
Next, we need to get the files and process them to get them in the right shape.

The provided script, make_titanic_example_data.py, will split the train and test data files
from Kaggle up into groups of related features and store them in
dev, test, train, and train+dev subdirectories.
The development set that gets created by the script is 20% of the data
that was in the original training set, and train contains the other 80%.

Create a configuration file for the experiment

For this tutorial, we will refer to an “experiment” as having a single data set
split into training and testing portions. As part of each
experiment, we can train and test several models, either simultaneously or
sequentially, depending whether we’re using
GridMap [https://pypi.org/project/gridmap/] or not.
This will be described in more detail later on, when we are ready to run our
experiment.

You can consult the full list of learners currently available
in SKLL to get an idea for the things you can do. As part of this tutorial, we
will use the following classifiers:

	Decision Tree

	Multinomial Naïve Bayes

	Random Forest

	Support Vector Machine

[General]
experiment_name = Titanic_Evaluate_Tuned
task = evaluate

[Input]
this could also be an absolute path instead (and must be if you're not
running things in local mode)
train_directory = train
test_directory = dev
featuresets = [["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv"]]
learners = ["RandomForestClassifier", "DecisionTreeClassifier", "SVC", "MultinomialNB"]
label_col = Survived
id_col = PassengerId

[Tuning]
grid_search = true
grid_search_folds = 3
objectives = ['accuracy']

[Output]
again, these can be absolute paths
metrics = ['roc_auc']
probability = true
logs = output
results = output
predictions = output
models = output

Let’s take a look at the options specified in titanic/evaluate_tuned.cfg.
Here, we are only going to train a model and evaluate its performance on the
development set, because in the General section, task is set to
evaluate. We will explore the other options for task
later.

In the Input section, we have specified relative paths to the training
and testing directories via the train_directory and
test_directory settings respectively.
featuresets indicates the name of both the training and
testing files. learners must always be specified in between []
brackets, even if you only want to use one learner. This is similar to the
featuresets option, which requires two sets of brackets,
since multiple sets of different-yet-related features can be provided. We will
keep our examples simple, however, and only use one set of features per
experiment. The label_col and id_col
settings specify the columns in the CSV files that specify the class labels and
instances IDs for each example.

The Tuning section defines how we want our model to be tuned. Setting
grid_search to True here employs scikit-learn’s
GridSearchCV [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV]
class, which is an implementation of the
standard, brute-force approach to hyperparameter optimization [https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search].

objectives refers to the desired objective functions; here,
accuracy will optimize for overall accuracy. You can see a list of all the
available objective functions here.

In the Output section, we first define the additional evaluation
metrics we want to compute in addition to the tuning objective via the
metrics option. The other options are directories
where you’d like all of the relevant output from your experiment to go.
results refers to the results of the experiment in both
human-readable and JSON forms. logs specifies where to put log
files containing any status, warning, or error messages generated during
model training and evaluation. predictions refers to
where to store the individual predictions generated for the test set.
models is for specifying a directory to serialize the trained
models.

Running your configuration file through run_experiment

Getting your experiment running is the simplest part of using SKLL, you just
need to type the following into a terminal:

$ run_experiment titanic/evaluate_tuned.cfg

Make sure you have the skllenv environment activated before you run
this command which should produce output like:

2020-03-10 14:25:23,596 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Task: evaluate
2020-03-10 14:25:23,596 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Training on train, Test on dev, feature set ['family.csv', 'misc.csv', 'socioeconomic.csv', 'vitals.csv'] ...
Loading /Users/nmadnani/work/skll/examples/titanic/train/family.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/misc.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/socioeconomic.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/vitals.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/family.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/misc.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/socioeconomic.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/vitals.csv... done
2020-03-10 14:25:23,662 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Featurizing and training new RandomForestClassifier model
2020-03-10 14:25:23,663 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - WARNING - Training data will be shuffled to randomize grid search folds. Shuffling may yield different results compared to scikit-learn.
2020-03-10 14:25:28,129 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Best accuracy grid search score: 0.798
2020-03-10 14:25:28,130 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Hyperparameters: bootstrap: True, ccp_alpha: 0.0, class_weight: None, criterion: gini, max_depth: 5, max_features: auto, max_leaf_nodes: None, max_samples: None, min_impurity_decrease: 0.0, min_impurity_split: None, min_samples_leaf: 1, min_samples_split: 2, min_weight_fraction_leaf: 0.0, n_estimators: 500, n_jobs: None, oob_score: False, random_state: 123456789, verbose: 0, warm_start: False
2020-03-10 14:25:28,130 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Evaluating predictions
2020-03-10 14:25:28,172 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - using probabilities for the positive class to compute "roc_auc" for evaluation.
2020-03-10 14:25:28,178 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Task: evaluate
2020-03-10 14:25:28,178 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Training on train, Test on dev, feature set ['family.csv', 'misc.csv', 'socioeconomic.csv', 'vitals.csv'] ...
Loading /Users/nmadnani/work/skll/examples/titanic/train/family.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/misc.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/socioeconomic.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/vitals.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/family.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/misc.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/socioeconomic.csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/vitals.csv... done
2020-03-10 14:25:28,226 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Featurizing and training new DecisionTreeClassifier model
2020-03-10 14:25:28,226 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - WARNING - Training data will be shuffled to randomize grid search folds. Shuffling may yield different results compared to scikit-learn.
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Best accuracy grid search score: 0.754
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Hyperparameters: ccp_alpha: 0.0, class_weight: None, criterion: gini, max_depth: None, max_features: None, max_leaf_nodes: None, min_impurity_decrease: 0.0, min_impurity_split: None, min_samples_leaf: 1, min_samples_split: 2, min_weight_fraction_leaf: 0.0, presort: deprecated, random_state: 123456789, splitter: best
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Evaluating predictions
2020-03-10 14:25:28,272 - Titanic_Evaluate_Tuned_family.csv+misc.csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - using probabilities for the positive class to compute "roc_auc" for evaluation.

We could squelch the warnings about shuffling by setting
shuffle to True in the Input section.

The reason we see the loading messages repeated is that we are running the
different learners sequentially, whereas SKLL is designed to take advantage
of a cluster to execute everything in parallel via GridMap.

Examine the results

As a result of running our experiment, there will be a whole host of files in
our results directory. They can be broken down into three
types of files:

	.results files, which contain a human-readable summary of the
experiment, complete with confusion matrix.

	.results.json files, which contain all of the same information as the
.results files, but in a format more well-suited to automated
processing.

	A summary .tsv file, which contains all of the information in all of
the .results.json files with one line per file. This is very nice if
you’re trying many different learners and want to compare their performance.
If you do additional experiments later (with a different config file), but
would like one giant summary file, you can use the summarize_results
command.

An example of a human-readable results file for our Titanic experiment is:

Experiment Name: Titanic_Evaluate_Tuned
SKLL Version: 2.1
Training Set: train
Training Set Size: 569
Test Set: dev
Test Set Size: 143
Shuffle: False
Feature Set: ["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv"]
Learner: RandomForestClassifier
Task: evaluate
Feature Scaling: none
Grid Search: True
Grid Search Folds: 3
Grid Objective Function: accuracy
Additional Evaluation Metrics: ['roc_auc']
Scikit-learn Version: 0.22.2.post1
Start Timestamp: 10 Mar 2020 14:25:23.595787
End Timestamp: 10 Mar 2020 14:25:28.175375
Total Time: 0:00:04.579588

Fold:
Model Parameters: {"bootstrap": true, "ccp_alpha": 0.0, "class_weight": null, "criterion": "gini", "max_depth": 5, "max_features": "auto", "max_leaf_nodes": null, "max_samples": null, "min_impurity_decrease": 0.0, "min_impurity_split": null, "min_samples_leaf": 1, "min_samples_split": 2, "min_weight_fraction_leaf": 0.0, "n_estimators": 500, "n_jobs": null, "oob_score": false, "random_state": 123456789, "verbose": 0, "warm_start": false}
Grid Objective Score (Train) = 0.797874315418175
+----+------+------+-------------+----------+-------------+
| | 0 | 1 | Precision | Recall | F-measure |
+====+======+======+=============+==========+=============+
| 0 | [79] | 8 | 0.849 | 0.908 | 0.878 |
+----+------+------+-------------+----------+-------------+
| 1 | 14 | [42] | 0.840 | 0.750 | 0.792 |
+----+------+------+-------------+----------+-------------+
(row = reference; column = predicted)
Accuracy = 0.8461538461538461
Objective Function Score (Test) = 0.8461538461538461

Additional Evaluation Metrics (Test):
 roc_auc = 0.9224137931034483

IRIS Example on Binder

If you prefer using an interactive Jupyter notebook to learn about SKLL, you can do so by clicking the launch button below.

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/EducationalTestingService/skll/main?filepath=examples%2FTutorial.ipynb]

Running Experiments

General Workflow

To run your own SKLL experiments via the command line, the following general workflow
is recommended.

Get your data into the correct format

SKLL can work with several common data formats, all of which are described
here.

If you need to convert between any of the supported formats, because, for
example, you would like to create a single data file that will work both with
SKLL and Weka (or some other external tool), the skll_convert script can
help you out. It is as easy as:

$ skll_convert examples/titanic/train/family.csv examples/titanic/train/family.arff

Create sparse feature files, if necessary

skll_convert can also create sparse data files in
.jsonlines, .libsvm, or
.ndj formats. This is very useful for saving disk space and
memory when you have a large data set with mostly zero-valued features.

Set up training and testing directories/files

At a minimum, you will probably want to work with a training set and a testing
set. If you have multiple feature files that you would like SKLL to join together
for you automatically, you will need to create feature files with the exact
same names and store them in training and testing directories. You can
specifiy these directories in your config file using
train_directory and
test_directory. The list of files is specified using
the featuresets setting.

If you’re conducting a simpler experiment, where you have a single training
file with all of your features and a similar single testing file, you should
use the train_file and test_file
settings in your config file.

Note

If you would like to split an existing file up into a training
set and a testing set, you can employ the filter_features
utility script to select instances you would like to include in
each file.

Create an experiment configuration file

You saw a basic configuration file in the tutorial. For your
own experiment, you will need to refer to the Configuration file fields section.

Run configuration file through run_experiment

There are a few meta-options for experiments that are specified directly to the
run_experiment command rather than in a configuration
file. For example, if you would like to run an ablation experiment, which
conducts repeated experiments using different combinations of the features in
your config, you should use the run_experiment --ablation option. A
complete list of options is available here.

Next, we describe the numerous file formats that SKLL supports for reading
in features.

Feature files

SKLL supports the following feature file formats:

arff

The same file format used by Weka [https://www.cs.waikato.ac.nz/ml/weka/]
with the following added restrictions:

	Only simple numeric, string, and nomimal values are supported.

	Nominal values are converted to strings.

	If the data has instance IDs, there should be an attribute with the name
specified by id_col in the Input section of the configuration file you create for your experiment. This defaults to id. If there is no such attribute, IDs will be generated automatically.

	If the data is labelled, there must be an attribute with the name specified
by label_col in the Input section of the
configuartion file you create for your experiment. This defaults to y.
This must also be the final attribute listed (like in Weka).

csv/tsv

A simple comma or tab-delimited format. SKLL underlyingly uses
pandas [https://pandas.pydata.org] to read these files which is
extremely fast but at the cost of some extra memory consumption.

When using this file format, the following restrictions apply:

	If the data is labelled, there must be a column with the name
specified by label_col in the Input section of the
configuration file you create for your experiment. This defaults to
y.

	If the data has instance IDs, there should be a column with the name
specified by id_col in the Input section of the configuration file you create for your experiment. This defaults to id. If there is no such column, IDs will be generated automatically.

	All other columns contain feature values, and every feature value
must be specified (making this a poor choice for sparse data).

Warning

	SKLL will raise an error if there are blank values in any of the
columns. You must either drop all rows with blank values in any column
or replace the blanks with a value you specify. To drop or replace via
the command line, use the filter_features script.
You can also drop/replace via the SKLL Reader API, specifically skll.data.readers.CSVReader and skll.data.readers.TSVReader.

	Dropping blanks will drop all rows with blanks in any of
the columns. If you care only about some of the columns in the file
and do not want to rows to be dropped due to blanks in the other columns,
you should remove the columns you do not care about before dropping the
blanks. For example, consider a hypothetical file in.csv that contains
feature columns named A through G with the IDs stored in a column
named ID and the labels stored in a column named CLASS. You only
care about columns A, C, and F and want to drop all rows in
the file that have blanks in any of these 3 columns but do not want
to lose data due to there being blanks in any of the other columns. On
the command line, you can run the following two commands:

$ filter_features -f A C F --id_col ID --label_col class in.csv temp.csv
$ filter_features --id_col ID --label_col CLASS --drop_blanks temp.csv out.csv

If you are using the SKLL Reader API, you can accomplish the same in a
single step by also passing using the keyword argument pandas_kwargs
when instantiating either a skll.data.readers.CSVReader or a
skll.data.readers.TSVReader. For our example:

r = CSVReader.for_path('/path/to/in.csv',
 label_col='CLASS',
 id_col='ID',
 drop_blanks=True,
 pandas_kwargs={'usecols': ['A', 'C', 'F', 'ID', 'CLASS']})
fs = r.read()

Make sure to include the ID and label columns in the usecols list
otherwise pandas will drop them too.

jsonlines/ndj (Recommended)

A twist on the JSON [http://www.json.org/] format where every line is a
either JSON dictionary (the entire contents of a normal JSON file), or a
comment line starting with //. Each dictionary is expected to contain the
following keys:

	y: The class label.

	x: A dictionary of feature values.

	id: An optional instance ID.

This is the preferred file format for SKLL, as it is sparse and can be slightly
faster to load than other formats.

libsvm

While we can process the standard input file format supported by
LibSVM [https://www.csie.ntu.edu.tw/~cjlin/libsvm/],
LibLinear [https://www.csie.ntu.edu.tw/~cjlin/liblinear/],
and SVMLight [https://www.cs.cornell.edu/people/tj/svm_light/], we also support specifying
extra metadata usually missing from the format in comments at the of each line.
The comments are not mandatory, but without them, your labels and features will
not have names. The comment is structured as follows:

ID | 1=ClassX | 1=FeatureA 2=FeatureB

The entire format would like this:

2 1:2.0 3:8.1 # Example1 | 2=ClassY | 1=FeatureA 3=FeatureC
1 5:7.0 6:19.1 # Example2 | 1=ClassX | 5=FeatureE 6=FeatureF

Note

IDs, labels, and feature names cannot contain the following
characters: | # =

Configuration file fields

The experiment configuration files that run_experiment accepts are standard
Python configuration files [https://docs.python.org/3/library/configparser.html]
that are similar in format to Windows INI files. [1]
There are four expected sections in a configuration file: General,
Input, Tuning, and Output. A detailed description of each
field in each section is provided below, but to summarize:

	If you want to do cross-validation, specify a path to training feature
files, and set task to cross_validate. Please note that the
cross-validation currently uses
StratifiedKFold [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html].
You also can optionally use predetermined folds with the
folds_file setting.

Note

When using classifiers, SKLL will automatically reduce the
number of cross-validation folds to be the same as the minimum
number of examples for any of the classes in the training data.

	If you want to train a model and evaluate it on some data, specify a
training location, a test location, and a directory to store results,
and set task to evaluate.

	If you want to just train a model and generate predictions, specify
a training location, a test location, and set task to predict.

	If you want to just train a model, specify a training location, and set
task to train.

	If you want to generate learning curves for your data, specify a training location and set task to learning_curve. The learning curves are generated using essentially the same underlying process as in scikit-learn [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve] except that the SKLL feature pre-processing pipeline is used while training the various models and computing the scores.

Note

	Ideally, one would first do cross-validation experiments with grid search and/or ablation and get a well-performing set of features and hyper-parameters for a set of learners. Then, one would explicitly specify those features (via featuresets) and hyper-parameters (via fixed_parameters) in the config file for the learning curve and explore the impact of the size of the training data.

	To ensure reliable results, SKLL expects a minimum of 500 examples in the training set when generating learning curves.

	If you set probability to True, the probabilities will be converted to the most likely label via an argmax before computing the curve.

	A list of classifiers/regressors to try on your feature
files is required.

Example configuration files are available here [https://github.com/EducationalTestingService/skll/tree/main/examples/] under the california, iris, and titanic sub-directories.

General

Both fields in the General section are required.

experiment_name

A string used to identify this particular experiment configuration. When
generating result summary files, this name helps prevent overwriting previous
summaries.

task

What types of experiment we’re trying to run. Valid options are:
cross_validate, evaluate,
predict, train, learning_curve.

Input

The Input section must specify the machine learners to use via the learners
field as well as the data and features to be used when
training the model. This can be done by specifying either (a)
train_file in which case all of the features in
the file will be used, or (b) train_directory along
with featuresets.

learners

List of scikit-learn models to be used in the experiment. Acceptable values
are described below. Custom learners can also be specified. See
custom_learner_path.

Classifiers:

	AdaBoostClassifier: AdaBoost Classification [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier]. Note that the default base estimator is a DecisionTreeClassifier. A different base estimator can be used by specifying an estimator fixed parameter in the fixed_parameters list. The following additional base estimators are supported: MultinomialNB, SGDClassifier, and SVC. Note that the last two base estimators require setting an additional algorithm fixed parameter with the value 'SAMME'.

	BaggingClassifier: Bagging Classification [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier]. Note that the default base estimator is a DecisionTreeClassifier. A different base estimator can be used by specifying an estimator fixed parameter in the fixed_parameters list. The following additional base estimators are supported: MultinomialNB, SGDClassifier, and SVC. Note that when using SVC base estimators, you may encounter errors if you have rare classes in your data.

	DummyClassifier: Simple rule-based Classification [https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html#sklearn.dummy.DummyClassifier]

	DecisionTreeClassifier: Decision Tree Classification [https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier]

	GradientBoostingClassifier: Gradient Boosting Classification [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier]

	HistGradientBoostingClassifier: Histogram-based Gradient Boosting Classifier [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier]. Requires dense feature array; sparse features will be automatically converted to dense when using this learner.

	KNeighborsClassifier: K-Nearest Neighbors Classification [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier]

	LinearSVC: Support Vector Classification using LibLinear [https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC]

	LogisticRegression: Logistic Regression Classification using LibLinear [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression]

	MLPClassifier: Multi-layer Perceptron Classification [https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier]

	MultinomialNB: Multinomial Naive Bayes Classification [https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB]

	RandomForestClassifier: Random Forest Classification [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier]

	RidgeClassifier: Classification using Ridge Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier]

	SGDClassifier: Stochastic Gradient Descent Classification [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html]

	SVC: Support Vector Classification using LibSVM [https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC]

	VotingClassifier: Soft Voting/Majority Rule classifier for unfitted estimators [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html]. Using this learner requires specifying the underlying estimators using the estimator_names fixed parameter in the fixed_parameters list. By default, this learner uses “hard” voting, i.e., majority rule. To use “soft” voting, i.e., based on the argmax of the sums of the probabilities from the underlying classifiers, specify the voting_type fixed_parameter and set it to “soft”. The following additional fixed parameters can also be supplied in the fixed_parameters list:

	estimator_fixed_parameters which takes a list of dictionaries to fix any parameters in the underlying learners to desired values,

	estimator_param_grids which takes a list of dictionaries specifying the possible list of parameters to search for every underlying learner,

	estimator_sampler_list which can be used to specify any feature sampling algorithms for the underlying learners, and

	estimator_sampler_parameters which can be used to specify any additional parameters for any specified samplers.

Refer to this example voting configuration file [https://github.com/EducationalTestingService/skll/blob/main/examples/iris/voting.cfg] to see how these parameters are used.

Regressors:

	AdaBoostRegressor: AdaBoost Regression [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor]. Note that the default base estimator is a DecisionTreeRegressor. A different base estimator can be used by specifying an estimator fixed parameter in the fixed_parameters list. The following additional base estimators are supported: LinearRegression, SGDRegressor, and SVR.

	BaggingRegressor: Bagging Regression [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor]. Note that the default base estimator is a DecisionTreeRegressor. A different base estimator can be used by specifying an estimator fixed parameter in the fixed_parameters list. The following additional base estimators are supported: LinearRegression, SGDRegressor, and SVR.

	BayesianRidge: Bayesian Ridge Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge]. Requires dense feature array; sparse features will be automatically converted to dense when using this learner.

	DecisionTreeRegressor: Decision Tree Regressor [https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor]

	DummyRegressor: Simple Rule-based Regression [https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html#sklearn.dummy.DummyRegressor]

	ElasticNet: ElasticNet Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet]

	GradientBoostingRegressor: Gradient Boosting Regressor [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor]

	HistGradientBoostingRegressor: Histogram-based Gradient Boosting Regressor [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor]. Requires dense feature array; sparse features will be automatically converted to dense when using this learner.

	HuberRegressor: Huber Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor]

	KNeighborsRegressor: K-Nearest Neighbors Regression [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor]

	Lars: Least Angle Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars]. Requires dense feature array; sparse features will be automatically converted to dense when using this learner.

	Lasso: Lasso Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso]

	LinearRegression: Linear Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression]

	LinearSVR: Support Vector Regression using LibLinear [https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR]

	MLPRegressor: Multi-layer Perceptron Regression [https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor]

	RandomForestRegressor: Random Forest Regression [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor]

	RANSACRegressor: RANdom SAmple Consensus Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor]. Note that the default base estimator is a LinearRegression. A different base regressor can be used by specifying a estimator fixed parameter in the fixed_parameters list. The following additional base estimators are supported: LinearRegression, SGDRegressor, and SVR.

	Ridge: Ridge Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge]

	SGDRegressor: Stochastic Gradient Descent Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html]

	SVR: Support Vector Regression using LibSVM [https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR]

	TheilSenRegressor: Theil-Sen Regression [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor]. Requires dense feature array; sparse features will be automatically converted to dense when using this learner.

	VotingRegressor: Prediction voting regressor for unfitted estimators [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html]. Using this learner requires specifying the underlying estimators using the estimator_names fixed parameter in the fixed_parameters list. The following additional fixed parameters can also be supplied in this list:

	estimator_fixed_parameters which takes a list of dictionaries to fix any parameters in the underlying learners to desired values,

	estimator_param_grids which takes a list of dictionaries specifying the possible list of parameters to search for every underlying learner,

	estimator_sampler_list which can be used to specify any feature sampling algorithms for the underlying learners, and

	estimator_sampler_parameters which can be used to specify any additional parameters for any specified samplers.

Refer to this example voting configuration file [https://github.com/EducationalTestingService/skll/blob/main/examples/california/voting.cfg] to see how these parameters are used.

For all regressors except VotingRegressor, you can also prepend
Rescaled to the beginning of the full name (e.g., RescaledSVR)
to get a version of the regressor where predictions are rescaled and
constrained to better match the training set. Rescaled regressors
can, however, be used as underlying estimators for VotingRegressor
learners.

featuresets

List of lists of prefixes for the files containing the features you would like
to train/test on. Each list will end up being a job. IDs are required to be
the same in all of the feature files, and a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised
if this is not the case. Cannot be used in combination with
train_file or test_file.

Note

If specifying train_directory or
test_directory, featuresets
is required.

train_file

Path to a file containing the features to train on. Cannot be used in
combination with featuresets,
train_directory, or test_directory.

Note

If train_file is not specified,
train_directory must be.

train_directory

Path to directory containing training data files. There must be a file for each
featureset. Cannot be used in combination with train_file
or test_file.

Note

If train_directory is not specified,
train_file must be.

The following is a list of the other optional fields in this section
in alphabetical order.

class_map (Optional)

If you would like to collapse several labels into one, or otherwise modify your
labels (without modifying your original feature files), you can specify a
dictionary mapping from new class labels to lists of original class labels. For
example, if you wanted to collapse the labels beagle and dachsund into a
dog class, you would specify the following for class_map:

{'dog': ['beagle', 'dachsund']}

Any labels not included in the dictionary will be left untouched.

One other use case for class_map is to deal with classification labels that
would be converted to float improperly. All Reader sub-classes use the
skll.data.readers.safe_float function internally to read labels. This function tries to
convert a single label first to int, then to float. If neither
conversion is possible, the label remains a str. Thus, care must be taken
to ensure that labels do not get converted in unexpected ways. For example,
consider the situation where there are classification labels that are a mixture
of int-converting and float-converting labels:

import numpy as np
from skll.data.readers import safe_float
np.array([safe_float(x) for x in ["2", "2.2", "2.21"]]) # array([2. , 2.2 , 2.21])

The labels will all be converted to floats and any classification model
generated with this data will predict labels such as 2.0, 2.2, etc.,
not str values that exactly match the input labels, as might be expected.
class_map could be used to map the original labels to new values that do
not have the same characteristics.

custom_learner_path (Optional)

Path to a .py file that defines a custom learner. This file will be
imported dynamically. This is only required if a custom learner is specified
in the list of learners.

All Custom learners must implement the fit and
predict methods. Custom classifiers must either (a) inherit from an existing scikit-learn classifier, or (b) inherit from both sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html]. and from sklearn.base.ClassifierMixin [https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html].

Similarly, Custom regressors must either (a) inherit from an existing scikit-learn regressor, or (b) inherit from both sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html]. and from sklearn.base.RegressorMixin [https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html].

Learners that require dense matrices should implement a method requires_dense
that returns True.

custom_metric_path (Optional)

Path to a .py file that defines a
custom metric function. This file will be imported dynamically. This is only required if a custom metric is specified as a
tuning objective, an output metric,
or both.

cv_seed (Optional)

The seed to use during the creation of the folds for the
cross_validate task. This option may be useful for
running the same cross validation experiment multiple times (with the same
number of differently constituted folds) to get a sense of the variance
across replicates.

Note that this seed is only used for shuffling the data before splitting it
into folds. The shuffling happens automatically when doing
grid search or if shuffle is explicitly
set to True. Defaults to 123456789.

feature_hasher (Optional)

If True, this enables a high-speed, low-memory vectorizer that uses
feature hashing for converting feature dictionaries into NumPy arrays
instead of using a
DictVectorizer [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html]. This flag will drastically
reduce memory consumption for data sets with a large number of
features. If enabled, the user should also specify the number of
features in the hasher_features field. For additional
information see the scikit-learn documentation [https://scikit-learn.org/stable/modules/feature_extraction.html#feature-hashing].

Warning

Due to the way SKLL experiments are architected, if the features
for an experiment are spread across multiple files on disk, feature
hashing will be applied to each file separately. For example, if
you have F feature files and you choose H as the number of hashed
features (via hasher_features), you will
end up with F x H features in the end. If this is not the
desired behavior, use the join_features
utility script to combine all feature files into a single file
before running the experiment.

feature_scaling (Optional)

Whether to scale features by their mean and/or their standard deviation. If you
scale by mean, your data will automatically be converted to dense, so use
caution when you have a very large dataset. Valid options are:

	none
	Perform no feature scaling at all.

	with_std
	Scale feature values by their standard deviation.

	with_mean
	Center features by subtracting their mean.

	both
	Perform both centering and scaling.

Defaults to none.

featureset_names (Optional)

Optional list of names for the feature sets. If omitted, then the prefixes
will be munged together to make names.

folds_file (Optional)

Path to a csv file specifying the mapping of instances in the training data
to folds. This can be specified when the task is either train or
cross_validate. For the train task, if grid_search
is True, this file, if specified, will be used to define the
cross-validation used for the grid search (leave one fold ID out at a time).
Otherwise, it will be ignored.

For the cross_validate task, this file will be used to define the outer
cross-validation loop and, if grid_search is True, also for the
inner grid-search cross-validation loop. If the goal of specifiying the folds
file is to ensure that the model does not learn to differentiate based on a confound:
e.g. the data from the same person is always in the same fold, it makes sense to
keep the same folds for both the outer and the inner cross-validation loops.

However, sometimes the goal of specifying the folds file is simply for the
purpose of comparison to another existing experiment or another context
in which maintaining the constitution of the folds in the inner
grid-search loop is not required. In this case, users may set the parameter
use_folds_file_for_grid_search
to False which will then direct the inner grid-search cross-validation loop
to simply use the number specified via grid_search_folds
instead of using the folds file. This will likely lead to shorter execution times as
well depending on how many folds are in the folds file and the value
of grid_search_folds.

The format of this file must be as follows: the first row must be a header.
This header row is ignored, so it doesn’t matter what the header row contains,
but it must be there. If there is no header row, whatever row is in its place
will be ignored. The first column should consist of training set IDs and the
second should be a string for the fold ID (e.g., 1 through 5, A through D, etc.).
If specified, the CV and grid search will leave one fold ID out at a time. [2]

fixed_parameters (Optional)

List of dictionaries containing parameters you want to have fixed for each
learner in the learners list. Empty dictionaries will be ignored
and the defaults will be used for these learners. If grid_search is True,
there is a potential for conflict with specified/default parameter grids
and fixed parameters.

Note

Tuples are not supported in the config file, and will lead to parsing errors.
Make sure to replace tuples with lists when specifying fixed parameters.
As an example, consider the following parameter that’s usually defined as a tuple in scikit-learn:

{'hidden_layer_sizes': (28, 28)}

To specify it in fixed_parameters, use a list instead:

{'hidden_layer_sizes': [28, 28]}

The default fixed parameters (beyond those that scikit-learn sets) are:

	AdaBoostClassifier and AdaBoostRegressor
	{'n_estimators': 500, 'random_state': 123456789}

	BaggingClassifier and BaggingRegressor
	{'n_estimators': 500, 'random_state': 123456789}

	DecisionTreeClassifier and DecisionTreeRegressor
	{'random_state': 123456789}

	DummyClassifier
	{'random_state': 123456789}

	ElasticNet
	{'random_state': 123456789}

	GradientBoostingClassifier and GradientBoostingRegressor
	{'n_estimators': 500, 'random_state': 123456789}

	HistGradientBoostingClassifier and HistGradientBoostingRegressor
	{'random_state': 123456789}

	Lasso:
	{'random_state': 123456789}

	LinearSVC and LinearSVR
	{'random_state': 123456789}

	LogisticRegression
	{'max_iter': 1000, 'multi_class': 'auto', 'random_state': 123456789, 'solver': 'liblinear'}

Note

The regularization penalty used by default is "l2". However, "l1", "elasticnet", and "none" (no regularization) are also available. There is a dependency between the penalty and the solver. For example, the "elasticnet" penalty can only be used in conjunction with the "saga" solver. See more information in the scikit-learn documentation here [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html].

	MLPClassifier and MLPRegressor:
	{'learning_rate': 'invscaling', 'max_iter': 500}

	RandomForestClassifier and RandomForestRegressor
	{'n_estimators': 500, 'random_state': 123456789}

	RANSACRegressor
	{'loss': 'squared_error', 'random_state': 123456789}

	Ridge and RidgeClassifier
	{'random_state': 123456789}

	SVC and SVR
	{'cache_size': 1000, 'gamma': 'scale'}

	SGDClassifier
	{'loss': 'log', 'max_iter': 1000, 'random_state': 123456789, 'tol': 1e-3}

	SGDRegressor
	{'max_iter': 1000, 'random_state': 123456789, 'tol': 1e-3}

	TheilSenRegressor
	{'random_state': 123456789}

Note

The fixed_parameters field offers us a way to deal with imbalanced
data sets by using the parameter class_weight for the following
classifiers: DecisionTreeClassifier, LogisticRegression,
LinearSVC, RandomForestClassifier, RidgeClassifier,
SGDClassifier, and SVC.

Two possible options are available. The first one is balanced, which
automatically adjusts weights inversely proportional to class
frequencies, as shown in the following code:

{'class_weight': 'balanced'}

The second option allows you to assign a specific weight per each
class. The default weight per class is 1. For example:

{'class_weight': {1: 10}}

Additional examples and information can be seen here [https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html].

hasher_features (Optional)

The number of features used by the FeatureHasher [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html] if the
feature_hasher flag is enabled.

Note

To avoid collisions, you should always use the power of two larger than the
number of features in the data set for this setting. For example, if you
had 17 features, you would want to set the flag to 32.

id_col (Optional)

If you’re using ARFF, CSV, or TSV
files, the IDs for each instance are assumed to be in a column with this
name. If no column with this name is found, the IDs are generated
automatically. Defaults to id.

ids_to_floats (Optional)

If you have a dataset with lots of examples, and your input files have IDs that
look like numbers (can be converted by float()), then setting this to True will
save you some memory by storing IDs as floats. Note that this will cause IDs to
be printed as floats in prediction files (e.g., 4.0 instead of 4 or
0004 or 4.000).

label_col (Optional)

If you’re using ARFF, CSV, or TSV
files, the class labels for each instance are assumed to be in a column with
this name. If no column with this name is found, the data is assumed to be
unlabelled. Defaults to y. For ARFF files only, this must also be the final
column to count as the label (for compatibility with Weka).

learning_curve_cv_folds_list (Optional)

List of integers specifying the number of folds to use for cross-validation
at each point of the learning curve (training size), one per learner. For
example, specifying ["SVC", "LogisticRegression"] for learners
and specifying [10, 100] for learning_curve_cv_folds_list will
tell SKLL to use 10 cross-validation folds at each point of the SVC curve and
100 cross-validation folds at each point of the logistic regression curve. Although
more folds will generally yield more reliable results, smaller number of folds
may be better for learners that are slow to train. Defaults to 10 for
each learner.

learning_curve_train_sizes (Optional)

List of floats or integers representing relative or absolute numbers
of training examples that will be used to generate the learning curve
of training examples that will be used to generate the learning curve
respectively. If the type is float, it is regarded as a fraction of
the maximum size of the training set (that is determined by the selected
validation method), i.e. it has to be within (0, 1]. Otherwise it is
interpreted as absolute sizes of the training sets. Note that for classification
the number of samples usually has to be big enough to contain at least
one sample from each class. Defaults to [0.1, 0.325, 0.55, 0.775, 1.0].

num_cv_folds (Optional)

The number of folds to use for cross validation. Defaults to 10.

random_folds (Optional)

Whether to use random folds for cross-validation. Defaults to False.

sampler (Optional)

Whether to use a feature sampler that performs non-linear transformations
of the input, which can serve as a basis for linear classification
or other algorithms. Valid options are:
Nystroem [https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem],
RBFSampler [https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler],
SkewedChi2Sampler [https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler], and
AdditiveChi2Sampler [https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html#sklearn.kernel_approximation.AdditiveChi2Sampler]. For additional information see
the scikit-learn documentation [https://scikit-learn.org/stable/modules/kernel_approximation.html].

Note

Using a feature sampler with the MultinomialNB learner is not allowed
since it cannot handle negative feature values.

sampler_parameters (Optional)

dict containing parameters you want to have fixed for the sampler.
Any empty ones will be ignored (and the defaults will be used).

The default fixed parameters (beyond those that scikit-learn sets) are:

	Nystroem
	{'random_state': 123456789}

	RBFSampler
	{'random_state': 123456789}

	SkewedChi2Sampler
	{'random_state': 123456789}

shuffle (Optional)

If True, shuffle the examples in the training data before using them for
learning. This happens automatically when doing a grid search but it might be
useful in other scenarios as well, e.g., online learning. Defaults to
False.

suffix (Optional)

The file format the training/test files are in. Valid option are
.arff, .csv, .jsonlines,
.libsvm, .ndj, and .tsv.

If you omit this field, it is assumed that the “prefixes” listed in
featuresets are actually complete filenames. This can be
useful if you have feature files that are all in different formats that you
would like to combine.

test_file (Optional)

Path to a file containing the features to test on. Cannot be used in
combination with featuresets,
train_directory, or test_directory

test_directory (Optional)

Path to directory containing test data files. There must be a file
for each featureset. Cannot be used in combination with
train_file or test_file.

Tuning

Generally, in this section, you would specify fields that pertain to the
hyperparameter tuning for each learner. The most common required field
is objectives although it may also be optional in certain
circumstances.

objectives

A list of one or more metrics to use as objective functions for tuning the learner
hyperparameters via grid search. Note that objectives is required by default in most cases unless (a) grid_search is explicitly set to False or (b) the task is learning_curve. For (a), any specified objectives are ignored. For (b), specifying objectives will raise an exception.

SKLL provides the following metrics but you can also write your own custom metrics.

Classification: The following objectives can be used for classification problems although some are restricted by problem type (binary/multiclass), types of labels (integers/floats/strings), and whether they are contiguous (if integers). Please read carefully.

Note

When doing classification, SKLL internally sorts and maps all the class
labels in the data and maps them to integers which can be thought
of class indices. This happens irrespective of the data type of the
original labels. For example, if your data has the labels ['A', 'B', 'C'],
SKLL will map them to the indices [0, 1, 2] respectively. It will do the
same if you have integer labels ([1, 2, 3]) or floating point ones
([1.0, 1.1, 1.2]). All of the tuning objectives are computed using
these integer indices rather than the original class labels. This is why
some metrics only make sense in certain scenarios. For example, SKLL
only allows using weighted kappa metrics as tuning objectives if the original
class labels are contiguous integers, e.g., [1, 2, 3] or [4, 5, 6]
– or even integer-like floats (e,g., [1.0, 2.0, 3.0], but not
[1.0, 1.1, 1.2]).

	accuracy: Overall accuracy [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html]

	average_precision: Area under PR curve [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html] . To use this metric, probability must be set to True. (Binary classification only).

	balanced_accuracy: A version of accuracy specifically designed [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html#sklearn.metrics.balanced_accuracy_score] for imbalanced binary and multi-class scenarios.

	f1: The default scikit-learn F1 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html]
(F1 of the positive class for binary classification, or the weighted average F1 for multiclass classification)

	f1_score_macro: Macro-averaged F1 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html]

	f1_score_micro: Micro-averaged F1 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html]

	f1_score_weighted: Weighted average F1 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html]

	f1_score_least_frequent: F1 score of the least frequent
class. The least frequent class may vary from fold to fold for certain
data distributions.

	f05: The default scikit-learn Fβ=0.5 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html]
(Fβ=0.5 of the positive class for binary classification, or the weighted average Fβ=0.5 for multiclass classification)

	f05_score_macro: Macro-averaged Fβ=0.5 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html]

	f05_score_micro: Micro-averaged Fβ=0.5 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html]

	f05_score_weighted: Weighted average Fβ=0.5 score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html]

	jaccard: The default Jaccard similarity coefficient [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html] from scikit-learn for binary classification.

	jaccard_macro: Macro-averaged Jaccard similarity coefficient [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html]

	jaccard_micro: Micro-averaged Jaccard similarity coefficient [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html]

	jaccard_weighted: Weighted average Jaccard similarity coefficient [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html]

	kendall_tau: Kendall’s tau [https://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient] . For binary classification and with probability set to True, the probabilities for the positive class will be used to compute the correlation values. In all other cases, the labels are used. (Integer labels only).

	linear_weighted_kappa: Linear weighted kappa [http://www.vassarstats.net/kappaexp.html]. (Contiguous integer labels only).

	lwk_off_by_one: Same as linear_weighted_kappa, but all
ranking differences are discounted by one. (Contiguous integer labels only).

	neg_log_loss: The negative of the classification log loss [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html] . Since scikit-learn recommends [https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values] using negated loss functions as scorer functions, SKLL does the same for the sake of consistency. To use this metric, probability must be set to True.

	pearson: Pearson correlation [https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient] . For binary classification and with probability set to True, the probabilities for the positive class will be used to compute the correlation values. In all other cases, the labels are used. (Integer labels only).

	precision: Precision [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html] for binary classification

	precision_macro: Macro-averaged Precision [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html]

	precision_micro: Micro-averaged Precision [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html]

	precision_weighted: Weighted average Precision [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html]

	quadratic_weighted_kappa: Quadratic weighted kappa [http://www.vassarstats.net/kappaexp.html]. (Contiguous integer labels only). If you wish to compute quadratic weighted kappa for continuous
values, you may want to use the implementation provided by RSMTool [https://rsmtool.readthedocs.io/en/main/evaluation.html#quadratic-weighted-kappa-qwk].
To do so, install the RSMTool Python package [https://rsmtool.readthedocs.io/en/main/getting_started.html] and create a custom metric that wraps rsmtool.utils.quadratic_weighted_kappa.

	qwk_off_by_one: Same as quadratic_weighted_kappa, but all
ranking differences are discounted by one. (Contiguous integer labels only).

	recall: Recall [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html] for binary classification

	recall_macro: Macro-averaged Recall [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html]

	recall_micro: Micro-averaged Recall [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html]

	recall_weighted: Weighted average Recall [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html]

	roc_auc: Area under ROC curve [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html] .To use this metric, probability must be set to True. (Binary classification only).

	spearman: Spearman rank-correlation [https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient]. For binary classification and with probability set to True, the probabilities for the positive class will be used to compute the correlation values. In all other cases, the labels are used. (Integer labels only).

	unweighted_kappa: Unweighted Cohen’s kappa [https://en.wikipedia.org/wiki/Cohen's_kappa].

	uwk_off_by_one: Same as unweighted_kappa, but all ranking
differences are discounted by one. In other words, a ranking of
1 and a ranking of 2 would be considered equal.

Regression: The following objectives can be used for regression problems.

	explained_variance: A score [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score] indicating how much of the variance in the given data can be by the model.

	kendall_tau: Kendall’s tau [https://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient]

	linear_weighted_kappa: Linear weighted kappa (any floating point values are rounded to ints)

	lwk_off_by_one: Same as linear_weighted_kappa, but all
ranking differences are discounted by one.

	max_error: The maximum residual error [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.max_error.html#sklearn.metrics.max_error].

	neg_mean_absolute_error: The negative of the mean absolute error [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error] regression loss. Since scikit-learn recommends [https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values] using negated loss functions as scorer functions, SKLL does the same for the sake of consistency.

	neg_mean_squared_error: The negative of the mean squared error [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html] regression loss. Since scikit-learn recommends [https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values] using negated loss functions as scorer functions, SKLL does the same for the sake of consistency.

	neg_root_mean_squared_error: The negative of the mean squared error [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html] regression loss, with squared set to False. Since scikit-learn recommends [https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values] using negated loss functions as scorer functions, SKLL does the same for the sake of consistency.

	pearson: Pearson correlation [https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient]

	quadratic_weighted_kappa: Quadratic weighted kappa (any floating point values are rounded to ints)

	qwk_off_by_one: Same as quadratic_weighted_kappa, but all
ranking differences are discounted by one.

	r2: R2 [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html]

	spearman: Spearman rank-correlation [https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient]

	unweighted_kappa: Unweighted Cohen’s kappa [https://en.wikipedia.org/wiki/Cohen's_kappa] (any floating point values are rounded to ints)

	uwk_off_by_one: Same as unweighted_kappa, but all ranking
differences are discounted by one. In other words, a ranking of
1 and a ranking of 2 would be considered equal.

The following is a list of the other optional fields in this section in alphabetical order.

grid_search (Optional)

Whether or not to perform grid search to find optimal parameters for
the learner. Defaults to True since optimizing model hyperparameters
almost always leads to better performance. Note that for the
learning_curve task, grid search is not allowed
and setting it to True will generate a warning and be ignored.

Note

	In versions of SKLL before v2.0, this option was set to
False by default but that was changed since the benefits
of hyperparameter tuning significantly outweigh the cost
in terms of model fitting time. Instead, SKLL users must explicitly
opt out of hyperparameter tuning if they so desire.

	Although SKLL only uses the combination of hyperparameters in
the grid that maximizes the grid search objective, the results
for all other points on the grid that were tried are also available.
See the grid_search_cv_results attribute in the .results.json
file.

grid_search_folds (Optional)

The number of folds to use for grid search. Defaults to 5.

grid_search_jobs (Optional)

Number of folds to run in parallel when using grid search. Defaults to
number of grid search folds.

min_feature_count (Optional)

The minimum number of examples for which the value of a feature must be nonzero
to be included in the model. Defaults to 1.

param_grids (Optional)

List of parameter grid dictionaries, one for each learner. Each parameter
grid is a dictionary mapping from strings to list of parameter values. When you
specify an empty dictionary for a learner, the default parameter grid for that
learner will be searched.

The default parameter grids for each learner are:

	AdaBoostClassifier and AdaBoostRegressor
	{'learning_rate': [0.01, 0.1, 1.0, 10.0, 100.0]}

	BaggingClassifier and BaggingRegressor
	{'max_samples': [0.1, 0.25, 0.5, 1.0],
 'max_features': [0.1, 0.25, 0.5, 1.0]}

	BayesianRidge
	{'alpha_1': [1e-6, 1e-4, 1e-2, 1, 10],
 'alpha_2': [1e-6, 1e-4, 1e-2, 1, 10],
 'lambda_1': [1e-6, 1e-4, 1e-2, 1, 10],
 'lambda_2': [1e-6, 1e-4, 1e-2, 1, 10]}

	DecisionTreeClassifier and DecisionTreeRegressor
	{'max_features': ["sqrt", None]}

	ElasticNet
	{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

	GradientBoostingClassifier and GradientBoostingRegressor
	{'max_depth': [1, 3, 5]}

	HistGradientBoostingClassifier
	{'learning_rate': [0.01, 0.1, 1.0],
 'min_samples_leaf': [10, 20, 40]}

	HistGradientBoostingRegressor
	{'loss': ['squared_error', 'absolute_error', 'poisson'],
 'learning_rate': [0.01, 0.1, 1.0],
 'min_samples_leaf': [10, 20, 40]}

	HuberRegressor
	{'epsilon': [1.05, 1.35, 1.5, 2.0, 2.5, 5.0],
 'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1, 10, 100, 1000]}

	KNeighborsClassifier and KNeighborsRegressor
	{'n_neighbors': [1, 5, 10, 100],
 'weights': ['uniform', 'distance']}

	Lasso
	{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

	LinearSVC
	{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

	LogisticRegression
	{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

	MLPClassifier and MLPRegressor:
	{'activation': ['logistic', 'tanh', 'relu'],
 'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1],
 'learning_rate_init': [0.001, 0.01, 0.1]},

	MultinomialNB
	{'alpha': [0.1, 0.25, 0.5, 0.75, 1.0]}

	RandomForestClassifier and RandomForestRegressor
	{'max_depth': [1, 5, 10, None]}

	Ridge and RidgeClassifier
	{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

	SGDClassifier and SGDRegressor
	{'alpha': [0.000001, 0.00001, 0.0001, 0.001, 0.01],
 'penalty': ['l1', 'l2', 'elasticnet']}

	SVC
	{'C': [0.01, 0.1, 1.0, 10.0, 100.0],
 'gamma': ['auto', 0.01, 0.1, 1.0, 10.0, 100.0]}

	SVR
	{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

Note

	Learners not listed here do not have any default
parameter grids in SKLL either because there are no
hyper-parameters to tune or decisions about which parameters
to tune (and how) depend on the data being used for the
experiment and are best left up to the user.

	Tuples are not supported in the config file, and will lead to parsing errors.
Make sure to replace tuples with lists when specifying fixed parameters.
As an example, consider the following parameter that’s usually defined as a tuple in scikit-learn:

{'hidden_layer_sizes': (28, 28)}

To specify it in param_grids, use a list instead:

{'hidden_layer_sizes': [28, 28]}

pos_label (Optional)

A string denoting the label of the class to be
treated as the positive class in a binary classification
setting. If unspecified, the class represented by the label
that appears second when sorted is chosen as the positive
class. For example, if the two labels in data are “A” and
“B” and pos_label is not specified, “B” will be chosen
as the positive class.

use_folds_file_for_grid_search (Optional)

Whether to use the specified folds_file for the inner grid-search
cross-validation loop when task is set to cross_validate.
Defaults to True.

Note

This flag is ignored for all other tasks, including the
train task where a specified folds_file is
always used for the grid search.

Output

The fields in this section generally pertain to the
output files produced
by the experiment. The most common fields are logs, models,
predictions, and results. These fields are mostly optional
although they may be required in certain cases. A common option
is to use the same directory for all of these fields.

logs (Optional)

Directory to store SKLL log files in.
If omitted, the current working directory is used.

models (Optional)

Directory in which to store trained models.
Can be omitted to not store models except when using the train
task, where this path must be specified. On the other hand, this path must
not be specified for the learning_curve task.

metrics (Optional)

For the evaluate and cross_validate tasks, this is an optional
list of additional metrics that will be computed in addition to
the tuning objectives and added to the results files. However, for the
learning_curve task, this list is required.
Possible values are all of the same functions as those available for the
tuning objectives (with the same caveats).

As with objectives, You can also use your own custom metric
functions.

Note

If the list of metrics overlaps with the grid search tuning
objectives, then, for each job, the objective
that overlaps is not computed again as a metric. Recall that
each SKLL job can only contain a single tuning objective. Therefore,
if, say, the objectives list is ['accuracy', 'roc_auc'] and the
metrics list is ['roc_auc', 'average_precision'], then in the
second job, roc_auc is used as the objective but not computed
as an additional metric.

pipeline (Optional)

Whether or not the final learner object should contain a pipeline
attribute that contains a scikit-learn Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html] object composed
of copies of each of the following steps of training the learner:

	feature vectorization (vectorizer)

	feature selection (selector)

	feature sampling (sampler)

	feature scaling (scaler)

	main estimator (estimator)

The strings in the parentheses represent the name given to each
step in the pipeline.

The goal of this attribute is to allow better interoperability
between SKLL learner objects and scikit-learn. The user can
train the model in SKLL and then further tweak or analyze
the pipeline in scikit-learn, if needed. Each component of the
pipeline is a (deep) copy of the component that was fit as part
of the SKLL model training process. We use copies since we do
not want the original SKLL model to be affected if the user
modifies the components of the pipeline in scikit-learn space.

Here’s an example of how to use this attribute.

from sklearn.preprocessing import LabelEncoder

from skll.data import Reader
from skll.learner import Learner

train a classifier and a regressor using the SKLL API
fs1 = Reader.for_path('examples/iris/train/example_iris_features.jsonlines').read()
learner1 = Learner('LogisticRegression', pipeline=True)
_ = learner1.train(fs1, grid_search=True, grid_objective='f1_score_macro')

fs2 = Reader.for_path('examples/california/train/example_california_features.jsonlines').read()
learner2 = Learner('RescaledSVR', feature_scaling='both', pipeline=True)
_ = learner2.train(fs2, grid_search=True, grid_objective='pearson')

now, we can explore the stored pipelines in sklearn space
enc = LabelEncoder().fit(fs1.labels)

first, the classifier
D1 = {"f0": 6.1, "f1": 2.8, "f2": 4.7, "f3": 1.2}
pipeline1 = learner1.pipeline
enc.inverse_transform(pipeline1.predict(D1))

then, the regressor
D2 = {"f0": 4.1344, "f1": 36.0, "f2": 4.1, "f3": 0.98, "f4": 1245.0, "f5": 3.0, "f6": 33.9, "f7": -118.32}
pipeline2 = learner2.pipeline
pipeline2.predict(D2)

note that without the `pipeline` attribute, one would have to
do the following for D1, which is much less readable
enc.inverse_transform(learner1.model.predict(learner1.scaler.transform(learner1.feat_selector.transform(learner1.feat_vectorizer.transform(D1)))))

Note

	When using a DictVectorizer [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html] in SKLL along with feature_scaling set to either with_mean or both, the sparse attribute of the vectorizer stage in the pipeline is set to False since centering requires dense arrays.

	When feature hashing is used (via a FeatureHasher [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html]) in SKLL along with feature_scaling set to either with_mean or both , a custom pipeline stage (skll.learner.Densifier) is inserted in the pipeline between the feature vectorization (here, hashing) stage and the feature scaling stage. This is necessary since a FeatureHasher does not have a sparse attribute to turn off – it only returns sparse vectors.

	A Densifier is also inserted in the pipeline when using a SkewedChi2Sampler [https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html] for feature sampling since this sampler requires dense input and cannot be made to work with sparse arrays.

predictions (Optional)

Directory in which to store prediction files.
Must not be specified for the learning_curve and
train tasks. If omitted, the current working directory is used.

probability (Optional)

Whether or not to output probabilities for each class instead of the
most probable class for each instance. Only really makes a difference
when storing predictions. Defaults to False. Note that this also
applies to the tuning objective.

results (Optional)

Directory in which to store result files.
If omitted, the current working directory is used.

save_cv_folds (Optional)

Whether to save the folds file containing the folds for a cross-validation experiment.
Defaults to True.

save_cv_models (Optional)

Whether to save each of the K model files trained during
each step of a K-fold cross-validation experiment.
Defaults to False.

save_votes (Optional)

Whether to save the predictions from the individual estimators underlying a
VotingClassifer or VotingRegressor. Note that for this to work,
predictions must be set.
Defaults to False.

wandb_credentials (Optional)

To enable logging metrics and artifacts to Weights & Biases [https://wandb.ai/], specify
a dictionary as follows:

{'wandb_entity': 'your_entity_name', 'wandb_project': 'your_project_name'}

wandb_entity can be a user name or the name of a team or organization.
wandb_project is the name of the project to which this experiment will be logged.
If a project by this name does not already exist, it will be created.
For more details on what will be logged, and an example report, see Integration with Weights & Biases.

Important

	Both wandb_entity and wandb_project must be specified. If any of them is missing, logging to W&B will not be enabled.

	Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines [https://docs.wandb.ai/quickstart#2-log-in-to-wb].

	Note that when using W&B logging, a SKLL run may take significantly longer due to the network traffic being
sent to W&B.

Using run_experiment

Once you have created the configuration file for your
experiment, you can usually just get your experiment started by running
run_experiment CONFIGFILE. [3] That said, there are a few options that are
specified via command-line arguments instead of in the configuration file:

	
-a <num_features>, --ablation <num_features>

	Runs an ablation study where repeated experiments are conducted with the
specified number of feature files in each featureset in the
configuration file held out. For example, if you have three feature
files (A, B, and C) in your featureset and you specifiy
--ablation 1, there will be three experiments conducted with
the following featuresets: [[A, B], [B, C], [A, C]]. Additionally,
since every ablation experiment includes a run with all the features as a
baseline, the following featureset will also be run: [[A, B, C]].

If you would like to try all possible combinations of feature files, you
can use the run_experiment --ablation_all option instead.

Warning

Ablation will not work if you specify a train_file
and test_file since no featuresets are defined in
that scenario.

	
-A, --ablation_all

	Runs an ablation study where repeated experiments are conducted with all
combinations of feature files in each featureset.

Warning

This can create a huge number of jobs, so please use with caution.

	
-k, --keep-models

	If trained models already exist for any of the learner/featureset
combinations in your configuration file, just load those models and
do not retrain/overwrite them.

	
-r, --resume

	If result files already exist for an experiment, do not overwrite them.
This is very useful when doing a large ablation experiment and part of
it crashes.

	
-v, --verbose

	Print more status information. For every additional time this flag is
specified, output gets more verbose.

	
--version

	Show program’s version number and exit.

GridMap options

If you have GridMap [https://pypi.org/project/gridmap/] installed,
run_experiment will automatically schedule jobs on your DRMAA-
compatible cluster. You can use the following options to customize this
behavior.

	
-l, --local

	Run jobs locally instead of using the cluster. [4]

	
-q <queue>, --queue <queue>

	Use this queue for GridMap [https://pypi.org/project/gridmap/].
(default: all.q)

	
-m <machines>, --machines <machines>

	Comma-separated list of machines to add to GridMap’s whitelist. If not
specified, all available machines are used.

Note

Full names must be specified, (e.g., nlp.research.ets.org).

Output files

For most of the SKLL tasks the various output files generated by run_experiment share the automatically generated prefix
<EXPERIMENT>_<FEATURESET>_<LEARNER>_<OBJECTIVE>, where the following definitions hold:

	<EXPERIMENT>
	The value of the experiment_name field in the configuration file.

	<FEATURESET>
	The components of the feature set that was used for training, joined with “+”.

	<LEARNER>
	The learner that was used to generate the current results/model/etc.

	<OBJECTIVE>
	The objective function that was used to generate the current results/model/etc.

Note

In SKLL terminology, a specific combination of featuresets, learners,
and objectives specified in the configuration file is called a job.
Therefore, an experiment (represented by a configuration file) can
contain multiple jobs.

However, if the objectives field in the configuration file
contains only a single value, the job can be disambiguated using only
the featuresets and the learners since the objective is fixed. Therefore,
the output files will have the prefix <EXPERIMENT>_<FEATURESET>_<LEARNER>.
Similarly, if a task has a single feature set, the output
files prefix will not include the <FEATURESET> component.

The following types of output files can be generated after running an experiment
configuration file through run_experiment. Note that
some file types may or may not be generated depending on the values of the fields
specified in the Output section of the configuration file.

Log files

SKLL produces two types of log files – one for each job in the experiment
and a single, top level log file for the entire experiment. Each of the job
log files have the usual job prefix as described above whereas the experiment
log file is simply named <EXPERIMENT>.log.

While the job-level log files contain messages that pertain to the specific
characteristics of the job (e.g., warnings from scikit-learn pertaining to
the specific learner), the experiment-level log file will contain logging
messages that pertain to the overall experiment and configuration file (e.g.,
an incorrect option specified in the configuration file). The messages in all
SKLL log files are in the following format:

<TIMESTAMP> - <LEVEL> - <MSG>

where <TIMESTAMP> refers to the exact time when the message was logged,
<LEVEL> refers to the level of the logging message (e.g., INFO, WARNING,
etc.), and <MSG> is the actual content of the message. All of the messages
are also printed to the console in addition to being saved in the job-level log
files and the experiment-level log file.

Model files

Model files end in .model and are serialized skll.learner.Learner
instances. run_experiment will re-use existing model
files if they exist, unless it is explicitly told not to. These model files
can also be loaded programmatically via the SKLL API, specifically the
skll.learner.Learner.from_file() method.

Results files

SKLL generates two types of result files:

	Files ending in .results which contain a human-readable summary of the
job, complete with confusion matrix, objective function score on the test set,
and values of any additional metrics specified via the metrics
configuration file option.

	Files ending in .results.json, which contain all of the same information as the
.results files, but in a format more well-suited to automated processing. In
some cases, .results.json files may contain more information than their
.results file counterparts. For example, when doing grid search
for tuning model hyperparameters, these files contain an additional attribute grid_search_cv_results containing detailed results from the grid search process.

Prediction files

Predictions files are TSV files that contain either the predicted
values (for regression) OR predicted labels/class probabiltiies
(for classification) for each instance in the test feature set.
The value of the probability option decides whether SKLL
outputs the labels or the probabilities.

When the predictions are labels or values, there
are only two columns in the file: one containing the ID for the instance
and the other containing the prediction. The headers for the two columns
in this case are “id” and “prediction”.

When the predictions are class probabilities, there are N+1 columns
in these files, where N is the number of classes in the training
data. The header for the column containing IDs is still “id” and the
labels themselves are the headers for the columns containing their
respective probabilities. In the special case of binary classification,
the positive class probabilities are always in
the last column.

Summary file

For every experiment you run, there will also be an experiment summary file
generated that is a tab-delimited file summarizing the results for each
job in the experiment. It is named <EXPERIMENT>_summary.tsv.
For learning_curve experiments, this summary
file will contain training set sizes and the averaged scores for all
combinations of featuresets, learners, and objectives.

Folds file

For the cross_validate task, SKLL can also output
the actual folds and instance IDs used in the cross-validation process, if
the save_cv_folds option is enabled. In this case,
a file called <EXPERIMENT>_skll_fold_ids.csv is saved to disk.

Learning curve plots

When running a learning_curve experiment,
actual learning curves are also generated as .png files. Two curves are generated
for each feature set specified in the configuration file.

The first .png file is named EXPERIMENT_FEATURESET.png
and contains a double-faceted learning curve plot for the featureset with the
specified output metrics along the rows and the
learners along the columns. Each sub-plot has the number of training
examples on the x-axis and the metric score on the y-axis. Here’s an example
of such a plot.

[image: _images/learning_curve.png]

The second .png file is named EXPERIMENT_FEATURESET_times.png
and contains a column-faceted learning curve plot for the featureset with a single
row and the specified learners along the columns. Each sub-plot has the
number of training examples on the x-axis and the model fit times on the y-axis.
Here’s an example of this plot.

[image: _images/learning_curve_times.png]

You can also generate the plots from the learning curve summary
file using the plot_learning_curves utility script.

Integration with Weights & Biases

The output of any SKLL experiment can be automatically logged to Weights & Biases [https://wandb.ai].
Once the logging is enabled, a new
run will be created under the specified W&B project. The following is logged
for all tasks:

	The SKLL configuration file, including default values for fields that were left unspecified

	The learner, feature set, and size of training and testing sets for each job in the experiment

	There are additional items logged depending on the task type:
	
	train: The full path to the generated model file is logged in the project summary.

	predict: The predictions file is logged as a table, separately for each job in the experiment.

	evaluate: The task summary file is logged as a table. For classification experiments,
the confusion matrix as well as a table that shows per-label precision, recall and f-measure
are logged for each job.

	cross_validate: Similar output logged as the evaluate task, with a separate job per CV fold.

	learning_curve The summary file is logged as a table, and all learning curve plots
are logged as media artifacts.

The above information logged to Weights & Biases can then be used to create informative reports for your
SKLL experiments. As an example, here [https://wandb.ai/etslabs/skll_titanic_example/reports/Titanic-Example-Report--Vmlldzo2ODAzNDY1?accessToken=jd3tssj6hs8rniby0rqgeahsm9oexppjgkjj3gdiisag49a0tkx1wnak806k4xjd] is
a report created on Weights & Biases, based on the data logged while running the titanic tutorial.
The report contains three sections, one per SKLL task, with a subset of the output tables and metrics that were logged for each of the tasks.

To view the full output and create your own reports, turn on logging to Weights and Biases
in the configuration Output section.

Footnotes

[1]
We are considering adding support for YAML configuration files in the
future, but we have not added this functionality yet.

[2]
K-1 folds will be used for grid search within CV, so there should be at
least 3 fold IDs.

[3]
If you installed SKLL via pip on macOS, you might get an error when
using run_experiment to generate learning curves. To get around this,
add MPLBACKEND=Agg before the run_experiment command and re-run.

[4]
This will happen automatically if GridMap cannot be imported.

Using Custom Metrics

Although SKLL comes with a huge number of built-in metrics for both classification and regression,
there might be occasions when you want to use a custom metric function for hyper-parameter
tuning or for evaluation. This section shows you how to do that.

Writing Custom Metric Functions

First, let’s look at how to write valid custom metric functions. A valid custom metric function
must take two array-like positional arguments: the first being the true labels or scores, and the
second being the predicted labels or scores. This function can also take two optional keyword arguments:

	greater_is_better: a boolean keyword argument that indicates whether a higher value of the metric indicates better performance (True) or vice versa (False). The default value is True.

	response_method : a string keyword argument that specifies the response method to use to get predictions from an estimator. Possible values are:

	"predict" : uses estimator’s predict() [https://scikit-learn.org/stable/glossary.html#term-predict] method to get class labels

	"predict_proba" : uses estimator’s predict_proba() [https://scikit-learn.org/stable/glossary.html#term-predict_proba] method to get class probabilities

	"decision_function" : uses estimator’s decision_function() [https://scikit-learn.org/stable/glossary.html#term-decision_function] method to get continuous decision function values

	If the value is a list or tuple of the above strings, it indicates that the scorer should use the first method in the list which is implemented by the estimator.

	If the value is None, it is the same as "predict".

The default value for response_method is None.

Note that these keyword arguments are identical to the keyword arguments for the sklearn.metrics.make_scorer() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer] function and serve the same purpose.

Important

Previous versions of SKLL offered the needs_proba and needs_threshold keyword arguments for custom metrics but these are now deprecated in scikit-learn and replaced by the response_method keyword argument. To replicate the behavior of needs_proba=True, use response_method="predict_proba" instead and to replicate needs_threshold=True, use response_method=("decision_function", "predict_proba") instead.

In short, custom metric functions take two required positional arguments (order matters) and two optional keyword arguments. Here’s a simple example of a custom metric function: Fβ with β=0.75 defined in a file called custom.py.

custom.py

from sklearn.metrics import fbeta_score

def f075(y_true, y_pred):
 return fbeta_score(y_true, y_pred, beta=0.75)

Obviously, you may write much more complex functions that aren’t directly
available in scikit-learn. Once you have written your metric function, the next
step is to use it in your SKLL experiment.

Using in Configuration Files

The first way of using custom metric functions is via your SKLL experiment
configuration file if you are running SKLL via the command line. To do so:

	Add a field called custom_metric_path in the
Input section of your configuration file and set its value to be the path to the .py file containing your custom metric function.

	Add the name of your custom metric function to either the objectives
field in the Tuning section (if you wish to use it to tune the model hyper-parameters) or to the metrics field in
the Output section if you wish to only use it for evaluation. You can also add it to both.

Here’s an example configuration file using data from the
SKLL Titanic example that illustrates this. This file
assumes that the file custom.py above is located in the same directory.

[General]
experiment_name = titanic
task = evaluate

[Input]
train_directory = train
test_directory = dev
featuresets = [["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv"]]
learners = ["RandomForestClassifier", "DecisionTreeClassifier", "SVC", "MultinomialNB"]
label_col = Survived
id_col = PassengerId
custom_metric_path = custom.py

[Tuning]
grid_search = true
objectives = ['f075']

[Output]
metrics = ['roc_auc']
probability = true
logs = output
results = output
predictions = output
models = output

And that’s it! SKLL will dynamically load and use your custom metric function when you run your experiment. Custom metric functions can be used for both hyper-parameter tuning and for evaluation.

Using via the API

To use a custom metric function via the SKLL API, you first need to register
the custom metric function using the register_custom_metric() function and
then just use the metric name either as a grid search objective, an output
metric, or both.

Here’s a short example that shows how to use the f075() custom metric
function we defined above via the SKLL API. Again, we assume that custom.py
is located in the current directory.

from skll.data import CSVReader
from skll.learner import Learner
from skll.metrics import register_custom_metric

register the custom function with SKLL
_ = register_custom_metric("custom.py", "f075")

let's assume the training data lives in a file called "train.csv"
we load that into a SKLL FeatureSet
fs = CSVReader.for_path("train.csv").read()

instantiate a learner and tune its parameters using the custom metric
learner = Learner('LogisticRegression')
learner.train(fs, grid_objective="f075")

...

As with configuration files, custom metric functions can be used for
both training as well as evaluation with the API.

Important

	When using the API, if you have multiple metric functions defined in a
Python source file, you must register each one individually using
register_custom_metric().

	When using the API, if you try to re-register the same metric in the
same Python session, it will raise a NameError. Therefore, if you
edit your custom metric, you must start a new Python session to be able
to see the changes.

	When using the API, if the names of any of your
custom metric functions conflict with names of metrics
that already exist in either SKLL or scikit-learn, it will raise a
NameError. You should rename the metric function in that case.

	When using a configuration file, if your custom metric name conflicts
with names of metrics that already exist in either
SKLL or scikit-learn, it will be silently ignored in favor of the
already existing metric.

	Unlike for the built-in metrics, SKLL does not check whether your custom
metric function is appropriate for classification or regression. You
must make that decision for yourself.

Utility Scripts

In addition to the main script, run_experiment, SKLL
comes with a number of helpful utility scripts that can be used to prepare
feature files and perform other routine tasks. Each is described briefly below.

compute_eval_from_predictions

Compute evaluation metrics from prediction files after you have run an
experiment.

Positional Arguments

	
examples_file

	SKLL input file with labeled examples

	
predictions_file

	file with predictions from SKLL

	
metric_names

	metrics to compute

Optional Arguments

	
--version

	Show program’s version number and exit.

filter_features

Filter feature file to remove (or keep) any instances with the specified IDs or
labels. Can also be used to remove/keep feature columns.

Warning

Starting with v2.5 of SKLL, the arguments for filter_features
have changed and are no longer backwards compatible with older
versions of SKLL. Specifically:

	The input and output files must now be specified with -i
and -o respectively.

	--inverse must now be used to invert the filtering command
since -i is used to specify the input file.

Required Arguments

	
-i, --input

	Input feature file (ends in .arff, .csv, .jsonlines,
.ndj, or .tsv)

	
-o, --output

	Output feature file (must have same extension as input file)

Optional Arguments

	
-f <feature <feature ...>>, --feature <feature <feature ...>>

	A feature in the feature file you would like to keep. If unspecified, no
features are removed.

	
-I <id <id ...>>, --id <id <id ...>>

	An instance ID in the feature file you would like to keep. If unspecified,
no instances are removed based on their IDs.

	
--inverse

	Instead of keeping features and/or examples in lists, remove them.

	
--id_col <id_col>

	Name of the column which contains the instance IDs in ARFF, CSV, or TSV files.
(default: id)

	
-L <label <label ...>>, --label <label <label ...>>

	A label in the feature file you would like to keep. If unspecified, no
instances are removed based on their labels.

	
-l <label_col>, --label_col <label_col>

	Name of the column which contains the class labels in ARFF, CSV, or TSV
files. For ARFF files, this must be the final column to count as the label.
(default: y)

	
-db, --drop-blanks

	Drop all lines/rows that have any blank values.
(default: False)

	
-rb <replacement>, --replace-blanks-with <replacement>

	Specifies a new value with which to replace blank values in all columns in the
file. To replace blanks differently in each column, use the SKLL Reader API directly.
(default: None)

	
-q, --quiet

	Suppress printing of "Loading..." messages.

	
--version

	Show program’s version number and exit.

generate_predictions

Loads a trained model and outputs predictions based on input feature files.
Useful if you want to reuse a trained model as part of a larger system without
creating configuration files. Offers the following modes of operation:

	For non-probabilistic classification and regression, generate the predictions.

	For probabilistic classification, generate either the most likely labels
or the probabilities for each class label.

	For binary probablistic classification, generate the positive class label
only if its probability exceeds the given threshold. The positive class
label is either read from the model file or inferred the same way as
a SKLL learner would.

Positional Arguments

	
model_file

	Model file to load and use for generating predictions.

	
input_file(s)

	One or more feature file(s) (ending in .arff, .csv, .jsonlines,
.libsvm, .ndj, or .tsv) (with or without the
label column), with the appropriate suffix.

Optional Arguments

	
-i <id_col>, --id_col <id_col>

	Name of the column which contains the instance IDs in ARFF, CSV, or TSV files.
(default: id)

	
-l <label_col>, --label_col <label_col>

	Name of the column which contains the labels in ARFF, CSV, or TSV files.
For ARFF files, this must be the final column to count as the label.
(default: y)

	
-o <path>, --output_file <path>

	Path to output TSV file. If not specified, predictions will be printed
to stdout. For probabilistic binary classification, the probability of
the positive class will always be in the last column.

	
-p, --predict_labels

	If the model does probabilistic classification, output the class label
with the highest probability instead of the class probabilities.

	
-q, --quiet

	Suppress printing of "Loading..." messages.

	
-t <threshold>, --threshold <threshold>

	If the model does binary probabilistic classification,
return the positive class label only if it meets/exceeds
the given threshold and the other class label otherwise.

	
--version

	Show program’s version number and exit.

join_features

Combine multiple feature files into one larger file.

Positional Arguments

	
infile ...

	Input feature files (ends in .arff, .csv, .jsonlines,
.ndj, or .tsv)

	
outfile

	Output feature file (must have same extension as input file)

Optional Arguments

	
-l <label_col>, --label_col <label_col>

	Name of the column which contains the labels in ARFF, CSV, or TSV files.
For ARFF files, this must be the final column to count as the label.
(default: y)

	
-q, --quiet

	Suppress printing of "Loading..." messages.

	
--version

	Show program’s version number and exit.

plot_learning_curves

Generate learning curve plots from a learning curve output TSV file.

Positional Arguments

	
tsv_file

	Input learning Curve TSV output file.

	
output_dir

	Output directory to store the learning curve plots.

print_model_weights

Prints out the weights of a given trained model. If the model
was trained using feature hashing,
feature names of the form hashed_feature_XX will be used
since the original feature names no longer apply.

Positional Arguments

	
model_file

	Model file to load.

Optional Arguments

	
--k <k>

	Number of top features to print (0 for all) (default: 50)

	
--sign {positive,negative,all}

	Show only positive, only negative, or all weights (default: all)

	
--sort_by_labels

	Order the features by classes (default: False). Mutually exclusive
with the --k option.

	
--version

	Show program’s version number and exit.

skll_convert

Convert between .arff, .csv., .jsonlines, .libsvm, and .tsv formats.

Positional Arguments

	
infile

	Input feature file (ends in .arff, .csv, .jsonlines,
.libsvm, .ndj, or .tsv)

	
outfile

	Output feature file (ends in .arff, .csv, .jsonlines,
.libsvm, .ndj, or .tsv)

Optional Arguments

	
-l <label_col>, --label_col <label_col>

	Name of the column which contains the labels in ARFF, CSV, or TSV files.
For ARFF files, this must be the final column to count as the label.
(default: y)

	
-q, --quiet

	Suppress printing of "Loading..." messages.

	
--arff_regression

	Create ARFF files for regression, not classification.

	
--arff_relation ARFF_RELATION

	Relation name to use for ARFF file. (default: skll_relation)

	
--no_labels

	Used to indicate that the input data has no labels.

	
--reuse_libsvm_map REUSE_LIBSVM_MAP

	If you want to output multiple files that use the same mapping from labels
and features to numbers when writing libsvm files, you can specify an
existing .libsvm file to reuse the mapping from.

	
--version

	Show program’s version number and exit.

summarize_results

Creates an experiment summary TSV file from a list of JSON files generated by
run_experiment.

Positional Arguments

	
summary_file

	TSV file to store summary of results.

	
json_file

	JSON results file generated by run_experiment.

Optional Arguments

	
-a, --ablation

	The results files are from an ablation run.

	
--version

	Show program’s version number and exit.

API Documentation

	Quickstart

	config Package
	fix_json()

	load_cv_folds()

	locate_file()

	data Package
	data.featureset Module
	FeatureSet
	FeatureSet.filter()

	FeatureSet.filtered_iter()

	FeatureSet.from_data_frame()

	FeatureSet.has_labels

	FeatureSet.split()

	data.readers Module
	Reader
	Reader.for_path()

	Reader.read()

	CSVReader

	TSVReader

	NDJReader

	DictListReader
	DictListReader.read()

	ARFFReader
	ARFFReader.split_with_quotes()

	LibSVMReader

	data.writers Module
	Writer
	Writer.for_path()

	Writer.write()

	CSVWriter

	TSVWriter

	NDJWriter

	ARFFWriter

	LibSVMWriter

	experiments Package

	learner Package
	Learner Class
	Learner
	Learner.cross_validate()

	Learner.evaluate()

	Learner.from_file()

	Learner.get_feature_names_out()

	Learner.learning_curve()

	Learner.load()

	Learner.model

	Learner.model_kwargs

	Learner.model_params

	Learner.model_type

	Learner.predict()

	Learner.probability

	Learner.save()

	Learner.train()

	load_custom_learner()

	VotingLearner Class
	VotingLearner
	VotingLearner.cross_validate()

	VotingLearner.evaluate()

	VotingLearner.from_file()

	VotingLearner.learners

	VotingLearner.learning_curve()

	VotingLearner.model

	VotingLearner.model_type

	VotingLearner.predict()

	VotingLearner.save()

	VotingLearner.train()

	metrics Module
	correlation()

	f1_score_least_frequent()

	kappa()

	register_custom_metric()

	use_score_func()

	utils Package
	CLASSIFICATION_ONLY_METRICS

	CORRELATION_METRICS

	PROBABILISTIC_METRICS

	REGRESSION_ONLY_METRICS

	UNWEIGHTED_KAPPA_METRICS

	WEIGHTED_KAPPA_METRICS

	get_skll_logger()

	types Module
	ClassMap

	ConfusionMatrix

	FeatureDict

	FeatureDictList

	FeaturesetIterator

	FoldMapping

	IdType

	IndexIterator

	LabelType

	LearningCurveSizes

	FeatGenerator

	PathOrStr

	SparseFeatureMatrix

	ComputeEvalMetricsResults

	EvaluateTaskResults

	CrossValidateTaskResults

	VotingCrossValidateTaskResults

Quickstart

Here is a quick run-down of how you accomplish common tasks.

Load a FeatureSet from a file:

from skll.data import Reader

example_reader = Reader.for_path('myexamples.csv')
train_examples = example_reader.read()

Or, work with an existing pandas DataFrame:

from skll.data import FeatureSet

assuming the data labels are in a column called "y"
train_examples = FeatureSet.from_data_frame(my_data_frame,
 "A Name for My Data",
 labels_column="y")

Train a linear svm (using the already loaded train_examples):

from skll.learner import Learner

learner = Learner('LinearSVC')
learner.train(train_examples)

Evaluate a trained model:

test_examples = Reader.for_path('test.tsv').read()
conf_matrix, accuracy, prf_dict, model_params, obj_score = learner.evaluate(test_examples)

Perform ten-fold cross-validation with a radial SVM:

learner = Learner('SVC')
fold_result_list, grid_search_scores = learner.cross-validate(train_examples)

fold_result_list in this case is a list of the results returned by
learner.evaluate for each fold, and grid_search_scores is the highest
objective function value achieved when tuning the model.

Generate predictions from a trained model:

predictions = learner.predict(test_examples)

config Package

	
skll.config.fix_json(json_string)

	Fix incorrectly formatted quotes and capitalized booleans in JSON string.

	Parameters:

	json_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – A JSON-style string.

	Returns:

	The normalized JSON string.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
skll.config.load_cv_folds(folds_file, ids_to_floats=False)

	Load cross-validation folds from a CSV file.

The CSV file must contain two columns: example ID and fold ID (and a header).

	Parameters:

	
	folds_file (skll.types.PathOrStr) – The path to a folds file to read.

	ids_to_floats (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether to convert IDs to floats.

	Returns:

	Dictionary with example IDs as the keys and fold IDs as the values.
If ids_to_floats is set to True, the example IDs are floats but
otherwise they are strings.

	Return type:

	skll.types.FoldMapping

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If example IDs cannot be converted to floats and ids_to_floats is True.

	
skll.config.locate_file(file_path, config_dir)

	Locate a file, given a file path and configuration directory.

	Parameters:

	
	file_path (skll.types.PathOrStr) – The file to locate. Path may be absolute or relative.

	config_dir (skll.types.PathOrStr) – The path to the configuration file directory.

	Returns:

	path_to_check – The normalized absolute path, if it exists.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If the file does not exist.

data Package

data.featureset Module

Classes related to storing/merging feature sets.

	author:

	Dan Blanchard (dblanchard@ets.org)

	author:

	Nitin Madnani (nmadnani@ets.org)

	author:

	Jeremy Biggs (jbiggs@ets.org)

	organization:

	ETS

	
class skll.data.featureset.FeatureSet(name, ids, labels=None, features=None, vectorizer=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Encapsulate features, labels, and metadata for a given dataset.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this feature set.

	ids (Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Example IDs for this set.

	labels (Optional[Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], default=None) – Labels for this set.

	features (Optional[Union[skll.types.FeatureDictList, numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], default=None) – The features for each instance represented as either a
list of dictionaries or a numpy array (if vectorizer is
also specified).

	vectorizer (Optional[Union[sklearn.feature_extraction.DictVectorizer [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer], sklearn.feature_extraction.FeatureHasher [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher]], default=None) – Vectorizer which will be used to generate the feature matrix.

Warning

FeatureSets can only be equal if the order of the instances is
identical because these are stored as lists/arrays. Since scikit-learn’s
DictVectorizer automatically sorts the underlying feature matrix
if it is sparse, we do not do any sorting before checking for equality.
This is not a problem because we _always_ use sparse matrices with
DictVectorizer when creating FeatureSets.

Notes

If ids, labels, and/or features are not None, the number of rows in
each array must be equal.

	
filter(ids=None, labels=None, features=None, inverse=False)

	Remove or keep features and/or examples from the given feature set.

Filtering is done in-place.

	Parameters:

	
	ids (Optional[List[skll.types.IdType]], default=None) – Examples to keep in the FeatureSet. If None, no ID
filtering takes place.

	labels (Optional[List[skll.types.LabelType]], default=None) – Labels that we want to retain examples for. If None,
no label filtering takes place.

	features (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], default=None) – Features to keep in the FeatureSet. To help with
filtering string-valued features that were converted
to sequences of boolean features when read in, any
features in the FeatureSet that contain a = will be
split on the first occurrence and the prefix will be
checked to see if it is in features.
If None, no feature filtering takes place.
Cannot be used if FeatureSet uses a FeatureHasher for
vectorization.

	inverse (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Instead of keeping features and/or examples in lists,
remove them.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If attempting to use features to filter a FeatureSet that
 uses a FeatureHasher vectorizer.

	Return type:

	None

	
filtered_iter(ids=None, labels=None, features=None, inverse=False)

	Retain only the specified features and/or examples from the output.

	Parameters:

	
	ids (Optional[List[skll.types.IdType]], default=None) – Examples to keep in the FeatureSet. If None, no ID
filtering takes place.

	labels (Optional[List[skll.types.LabelType]], default=None) – Labels that we want to retain examples for. If None,
no label filtering takes place.

	features (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]], default=None) – Features to keep in the FeatureSet. To help with
filtering string-valued features that were converted
to sequences of boolean features when read in, any
features in the FeatureSet that contain a = will be
split on the first occurrence and the prefix will be
checked to see if it is in features.
If None, no feature filtering takes place.
Cannot be used if FeatureSet uses a FeatureHasher for
vectorization.

	inverse (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Instead of keeping features and/or examples in lists,
remove them.

	Returns:

	A generator that yields 3-tuples containing:

	skll.types.IdType - The ID of the example.

	skll.types.LabelType - The label of the example.

	skll.types.FeatureDict - The feature dictionary, with
feature name as the key and example value as the value.

	Return type:

	skll.types.FeatGenerator

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the vectorizer is not a DictVectorizer.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any of the “labels”, “features”, or “vectorizer” attribute
 is None.

	
static from_data_frame(df, name, labels_column=None, vectorizer=None)

	Create a FeatureSet instance from a pandas data frame.

Will raise an Exception if pandas is not installed in your environment.
The ids in the FeatureSet will be the index from the given frame.

	Parameters:

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The pandas.DataFrame object to use as a FeatureSet.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the output FeatureSet instance.

	labels_column (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The name of the column containing the labels (data to predict).

	vectorizer (Optional[Union[sklearn.feature_extraction.DictVectorizer [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer], sklearn.feature_extraction.FeatureHasher [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher]]], default=None) – Vectorizer which will be used to generate the feature matrix.

	Returns:

	A FeatureSet instance generated from from the given data frame.

	Return type:

	skll.data.featureset.FeatureSet

	
property has_labels

	Check if FeatureSet has finite labels.

	Returns:

	has_labels – Whether or not this FeatureSet has any finite labels.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
static split(fs, ids_for_split1, ids_for_split2=None)

	Split FeatureSet into two new FeatureSet instances.

The splitting is done based on the given indices for the two splits.

	Parameters:

	
	fs (skll.data.featureset.FeatureSet) – The FeatureSet instance to split.

	ids_for_split1 (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list of example indices which will be split out into
the first FeatureSet instance. Note that the
FeatureSet instance will respect the order of the
specified indices.

	ids_for_split2 (Optional[List[int [https://docs.python.org/3/library/functions.html#int]]], default=None) – An optional list of example indices which will be
split out into the second FeatureSet instance.
Note that the FeatureSet instance will respect
the order of the specified indices. If this is
not specified, then the second FeatureSet
instance will contain the complement of the
first set of indices sorted in ascending order.

	Returns:

	A tuple containing the two featureset instances.

	Return type:

	Tuple[skll.data.featureset.FeatureSet, skll.data.featureset.FeatureSet]

data.readers Module

	
class skll.data.readers.Reader(path_or_list, quiet=True, ids_to_floats=False, label_col='y', id_col='id', class_map=None, sparse=True, feature_hasher=False, num_features=None, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Load FeatureSets from files on disk.

This is the base class used to create featureset readers for different
file types.

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]) – Path or a list of example dictionaries.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Loading…” status message to stderr.

	ids_to_floats (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Convert IDs to float to save memory. Will raise error
if we encounter an a non-numeric ID.

	label_col (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default='y') – Name of the column which contains the class labels
for ARFF/CSV/TSV files. If no column with that name
exists, or None is specified, the data is
considered to be unlabelled.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default='id') – Name of the column which contains the instance IDs.
If no column with that name exists, or None is
specified, example IDs will be automatically generated.

	class_map (Optional[skll.types.ClassMap], default=None) – Mapping from original class labels to new ones. This is
mainly used for collapsing multiple labels into a single
class. Anything not in the mapping will be kept the same.
The keys are the new labels and the list of values for each
key is the labels to be collapsed to said new label.

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether or not to store the features in a numpy CSR
matrix when using a DictVectorizer to vectorize the
features.

	feature_hasher (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether or not a FeatureHasher should be used to
vectorize the features.

	num_features (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – If using a FeatureHasher, how many features should the
resulting matrix have? You should set this to a power
of 2 greater than the actual number of features to
avoid collisions.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	
classmethod for_path(path_or_list, **kwargs)

	Instantiate Reader sub-class based on the file extension.

If the input is a list of dictionaries instead of a path, use a
dictionary reader instead.

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, skll.types.FeatureDictList]) – A path or list of example dictionaries.

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – The arguments to the Reader object being instantiated.

	Returns:

	reader – A new instance of the Reader sub-class that is
appropriate for the given path.

	Return type:

	skll.data.readers.Reader

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If file does not have a valid extension.

	
read()

	Load examples from various file formats.

The following formats are supported: .arff, .csv, .jsonlines,
.libsvm, .ndj, or .tsv formats.

	Returns:

	A FeatureSet instance representing the input file.

	Return type:

	skll.data.featureset.FeatureSet

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If ids_to_floats is True, but IDs cannot be converted.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If no features are found.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the example IDs are not unique.

	
class skll.data.readers.CSVReader(path_or_list, replace_blanks_with=None, drop_blanks=False, pandas_kwargs=None, **kwargs)

	Bases: Reader

Create a FeatureSet instance from a CSV file.

If example/instance IDs are included in the files, they
must be specified in the id column.
Also, there must be a column with the name specified by label_col if the
data is labeled.

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]]) – The path to a comma-delimited file.

	replace_blanks_with (Optional[Union[Number, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Number]]], default=None) – Specifies a new value with which to replace blank values.
Options are:

	Number : A (numeric) value with which to replace blank values.

	dict : A dictionary specifying the replacement value for each column.

	None : Blank values will be left as blanks, and not replaced.

The replacement occurs after the data set is read into a pd.DataFrame.

	drop_blanks (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – If True, remove lines/rows that have any blank
values. These lines/rows are removed after the
the data set is read into a pd.DataFrame.

	pandas_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – Arguments that will be passed directly to the pandas I/O reader.

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – Other arguments to the Reader object.

	
class skll.data.readers.TSVReader(path_or_list, replace_blanks_with=None, drop_blanks=False, pandas_kwargs=None, **kwargs)

	Bases: CSVReader

Create a FeatureSet instance from a TSV file.

If example/instance IDs are included in the files, they
must be specified in the id column.
Also there must be a column with the name specified by label_col
if the data is labeled.

	Parameters:

	
	path_or_list (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a comma-delimited file.

	replace_blanks_with (Optional[Union[Number, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Number]]], default=None) – Specifies a new value with which to replace blank values.
Options are:

	Number : A (numeric) value with which to replace blank values.

	dict : A dictionary specifying the replacement value for each column.

	None : Blank values will be left as blanks, and not replaced.

The replacement occurs after the data set is read into a pd.DataFrame.

	drop_blanks (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – If True, remove lines/rows that have any blank values. These
lines/rows are removed after the the data set is read into a
pd.DataFrame.

	pandas_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – Arguments that will be passed directly to the pandas I/O reader.

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – Other arguments to the Reader object.

	
class skll.data.readers.NDJReader(path_or_list, quiet=True, ids_to_floats=False, label_col='y', id_col='id', class_map=None, sparse=True, feature_hasher=False, num_features=None, logger=None)

	Bases: Reader

Create a FeatureSet instance from a JSONlines/NDJ file.

If example/instance IDs are included in the files, they
must be specified as the “id” key in each JSON dictionary.

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]) – Path or a list of example dictionaries.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Loading…” status message to stderr.

	ids_to_floats (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Convert IDs to float to save memory. Will raise error
if we encounter an a non-numeric ID.

	label_col (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default='y') – Name of the column which contains the class labels
for ARFF/CSV/TSV files. If no column with that name
exists, or None is specified, the data is
considered to be unlabelled.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default='id') – Name of the column which contains the instance IDs.
If no column with that name exists, or None is
specified, example IDs will be automatically generated.

	class_map (Optional[skll.types.ClassMap], default=None) – Mapping from original class labels to new ones. This is
mainly used for collapsing multiple labels into a single
class. Anything not in the mapping will be kept the same.
The keys are the new labels and the list of values for each
key is the labels to be collapsed to said new label.

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether or not to store the features in a numpy CSR
matrix when using a DictVectorizer to vectorize the
features.

	feature_hasher (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether or not a FeatureHasher should be used to
vectorize the features.

	num_features (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – If using a FeatureHasher, how many features should the
resulting matrix have? You should set this to a power
of 2 greater than the actual number of features to
avoid collisions.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	
class skll.data.readers.DictListReader(path_or_list, quiet=True, ids_to_floats=False, label_col='y', id_col='id', class_map=None, sparse=True, feature_hasher=False, num_features=None, logger=None)

	Bases: Reader

Facilitate programmatic use of methods that take FeatureSet as input.

Support Learner.predict() and other methods that take FeatureSet
objects as input. It iterates over examples in the same way as other
Reader classes, but uses a list of example dictionaries instead of
a path to a file.

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]) – Path or a list of example dictionaries.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Loading…” status message to stderr.

	ids_to_floats (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Convert IDs to float to save memory. Will raise error
if we encounter an a non-numeric ID.

	label_col (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default='y') – Name of the column which contains the class labels
for ARFF/CSV/TSV files. If no column with that name
exists, or None is specified, the data is
considered to be unlabelled.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default='id') – Name of the column which contains the instance IDs.
If no column with that name exists, or None is
specified, example IDs will be automatically generated.

	class_map (Optional[skll.types.ClassMap], default=None) – Mapping from original class labels to new ones. This is
mainly used for collapsing multiple labels into a single
class. Anything not in the mapping will be kept the same.
The keys are the new labels and the list of values for each
key is the labels to be collapsed to said new label.

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether or not to store the features in a numpy CSR
matrix when using a DictVectorizer to vectorize the
features.

	feature_hasher (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether or not a FeatureHasher should be used to
vectorize the features.

	num_features (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – If using a FeatureHasher, how many features should the
resulting matrix have? You should set this to a power
of 2 greater than the actual number of features to
avoid collisions.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	
read()

	Read examples from list of dictionaries.

	Returns:

	A FeatureSet representing the list of dictionaries we read in.

	Return type:

	skll.data.FeatureSet

	
class skll.data.readers.ARFFReader(path_or_list, **kwargs)

	Bases: Reader

Create a FeatureSet instance from an ARFF file.

If example/instance IDs are included in the files, they
must be specified in the id column.
Also, there must be a column with the name specified by label_col if the
data is labeled, and this column must be the final one (as it is in Weka).

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]]) – The path to the ARFF file.

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – Other arguments to the Reader object.

	
static split_with_quotes(string, delimiter=' ', quote_char="'", escape_char='\\')

	Split strings but not on split delimiters enclosed in quotes.

	Parameters:

	
	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string with quotes to split

	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str], default=' ') – The delimiter to split on.

	quote_char (str [https://docs.python.org/3/library/stdtypes.html#str], default="'") – The quote character to ignore.

	escape_char (str [https://docs.python.org/3/library/stdtypes.html#str], default='\') – The escape character.

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class skll.data.readers.LibSVMReader(path_or_list, quiet=True, ids_to_floats=False, label_col='y', id_col='id', class_map=None, sparse=True, feature_hasher=False, num_features=None, logger=None)

	Bases: Reader

Create a FeatureSet instance from a LibSVM/LibLinear/SVMLight file.

We use a specially formatted comment for storing example IDs, class names,
and feature names, which are normally not supported by the format. The
comment is not mandatory, but without it, your labels and features will
not have names. The comment is structured as follows:

ExampleID | 1=FirstClass | 1=FirstFeature 2=SecondFeature

	Parameters:

	
	path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]]) – Path or a list of example dictionaries.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Loading…” status message to stderr.

	ids_to_floats (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Convert IDs to float to save memory. Will raise error
if we encounter an a non-numeric ID.

	label_col (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default='y') – Name of the column which contains the class labels
for ARFF/CSV/TSV files. If no column with that name
exists, or None is specified, the data is
considered to be unlabelled.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default='id') – Name of the column which contains the instance IDs.
If no column with that name exists, or None is
specified, example IDs will be automatically generated.

	class_map (Optional[skll.types.ClassMap], default=None) – Mapping from original class labels to new ones. This is
mainly used for collapsing multiple labels into a single
class. Anything not in the mapping will be kept the same.
The keys are the new labels and the list of values for each
key is the labels to be collapsed to said new label.

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether or not to store the features in a numpy CSR
matrix when using a DictVectorizer to vectorize the
features.

	feature_hasher (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether or not a FeatureHasher should be used to
vectorize the features.

	num_features (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – If using a FeatureHasher, how many features should the
resulting matrix have? You should set this to a power
of 2 greater than the actual number of features to
avoid collisions.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

data.writers Module

	
class skll.data.writers.Writer(path, feature_set, quiet=True, subsets=None, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out FeatureSets to files on disk.

This is the base class used to create featureset writers for different
file types.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create. The suffix
to this filename must be .arff, .csv, .jsonlines,
.libsvm, .ndj, or .tsv. If subsets
is not None, when calling the write() method, path is
assumed to be a string containing the path to the directory to
write the feature files with an additional file extension
specifying the file type. For example /foo/.csv.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	
classmethod for_path(path, feature_set, **kwargs)

	Retrieve object of Writer sub-class appropriate for given path.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create. The
suffix to this filename must be .arff, .csv,
.jsonlines, .libsvm, .ndj, or
.tsv. If subsets is not None, when calling the
write() method, path is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the
file type. For example /foo/.csv.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – The keyword arguments for for_path are the same as
the initializer for the desired Writer subclass.

	Returns:

	writer – New instance of the Writer sub-class that is
appropriate for the given path.

	Return type:

	skll.data.Writer

	
write()

	Write out this Writer’s FeatureSet to a file in its format.

	Return type:

	None

	
class skll.data.writers.CSVWriter(path, feature_set, quiet=True, subsets=None, logger=None, label_col='y', id_col='id', pandas_kwargs=None)

	Bases: Writer

Writer for writing out FeatureSet instances as CSV files.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create.
If subsets is not None, this is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the file
type. For example /foo/.csv.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	label_col (str [https://docs.python.org/3/library/stdtypes.html#str], default="y") – The column name containing the label.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default="id") – The column name containing the ID.

	pandas_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str]], Any], default=None) – Arguments that will be passed directly to the pandas I/O reader.

	
class skll.data.writers.TSVWriter(path, feature_set, quiet=True, subsets=None, logger=None, label_col='y', id_col='id', pandas_kwargs=None)

	Bases: CSVWriter

Writer for writing out FeatureSets as TSV files.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create.
If subsets is not None, this is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the file
type. For example /foo/.tsv.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	label_col (str [https://docs.python.org/3/library/stdtypes.html#str], default="y") – The column name containing the label.

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str], default="id") – The column name containing the ID.

	pandas_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – Arguments that will be passed directly to the pandas I/O reader.

	
class skll.data.writers.NDJWriter(path, feature_set, quiet=True, subsets=None, logger=None)

	Bases: Writer

Writer for writing out FeatureSets as .jsonlines/.ndj files.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create.
If subsets is not None, this is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the file
type. For example /foo/.ndj.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	
class skll.data.writers.ARFFWriter(path, feature_set, quiet=True, subsets=None, logger=None, relation='skll_relation', regression=False, dialect='excel-tab', label_col='y', id_col='id')

	Bases: Writer

Writer for writing out FeatureSets as ARFF files.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create.
If subsets is not None, this is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the file
type. For example /foo/.arff.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	relation (str [https://docs.python.org/3/library/stdtypes.html#str], default='skll_relation') – The name of the relation in the ARFF file.

	regression (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Is this an ARFF file to be used for regression?

	kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – The arguments to the Writer object being instantiated.

	
class skll.data.writers.LibSVMWriter(path, feature_set, quiet=True, subsets=None, logger=None, label_map=None)

	Bases: Writer

Writer for writing out FeatureSets as LibSVM/SVMLight files.

	Parameters:

	
	path (skll.types.PathOrStr) – A path to the feature file we would like to create.
If subsets is not None, this is assumed to be a string
containing the path to the directory to write the feature
files with an additional file extension specifying the file
type. For example /foo/.libsvm.

	feature_set (skll.data.featureset.FeatureSet) – The FeatureSet instance to dump to the output file.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Do not print “Writing…” status message to stderr.

	subsets (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]], default=None) – A mapping from subset names to lists of feature names
that are included in those sets. If given, a feature
file will be written for every subset (with the name
containing the subset name as suffix to path).
Note, since string- valued features are automatically
converted into boolean features with names of the form
FEATURE_NAME=STRING_VALUE, when doing the
filtering, the portion before the = is all that’s
used for matching. Therefore, you do not need to
enumerate all of these boolean feature names in your
mapping.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logger instance to use to log messages instead of creating
a new one by default.

	label_map (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], default=None) – A mapping from label strings to integers.

experiments Package

learner Package

Learner Class

An easy-to-use class that wraps scikit-learn estimators.

	author:

	Nitin Madnani (nmadnani@ets.org)

	author:

	Michael Heilman (mheilman@ets.org)

	author:

	Dan Blanchard (dblanchard@ets.org)

	author:

	Aoife Cahill (acahill@ets.org)

	organization:

	ETS

	
class skll.learner.Learner(model_type, probability=False, pipeline=False, feature_scaling='none', model_kwargs=None, pos_label=None, min_feature_count=1, sampler=None, sampler_kwargs=None, custom_learner_path=None, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simpler interface around scikit-learn classification and regression estimators.

	Parameters:

	
	model_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of estimator to create (e.g., 'LogisticRegression').
See the skll package documentation for valid options.

	probability (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should learner return probabilities of all
labels (instead of just label with highest probability)?

	pipeline (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should learner contain a pipeline attribute that
contains a scikit-learn Pipeline object composed
of all steps including the vectorizer, the feature
selector, the sampler, the feature scaler, and the
actual estimator. Note that this will increase the
size of the learner object in memory and also when
it is saved to disk.

	feature_scaling (str [https://docs.python.org/3/library/stdtypes.html#str], default="none") – How to scale the features, if at all. Options are
- ‘with_std’: scale features using the standard deviation
- ‘with_mean’: center features using the mean
- ‘both’: do both scaling as well as centering
- ‘none’: do neither scaling nor centering

	model_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – A dictionary of keyword arguments to pass to the
initializer for the specified model.

	pos_label (Optional[skll.types.LabelType], default=None) – An integer or string denoting the label of the class to be
treated as the positive class in a binary classification
setting. If None, the class represented by the label
that appears second when sorted is chosen as the positive
class. For example, if the two labels in data are “A”
and “B” and pos_label is not specified, “B” will
be chosen as the positive class.

	min_feature_count (int [https://docs.python.org/3/library/functions.html#int], default=1) – The minimum number of examples a feature
must have a nonzero value in to be included.

	sampler (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The sampler to use for kernel approximation, if desired.
Valid values are
- ‘AdditiveChi2Sampler’
- ‘Nystroem’
- ‘RBFSampler’
- ‘SkewedChi2Sampler’

	sampler_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – A dictionary of keyword arguments to pass to the
initializer for the specified sampler.

	custom_learner_path (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – Path to module where a custom classifier is defined.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logging object. If None is passed, get logger from __name__.

	
cross_validate(examples, stratified=True, cv_folds=10, cv_seed=123456789, grid_search=True, grid_search_folds=5, grid_jobs=None, grid_objective=None, output_metrics=[], prediction_prefix=None, param_grid=None, shuffle=False, save_cv_folds=True, save_cv_models=False, use_custom_folds_for_grid_search=True)

	Cross-validate the learner on the given training examples.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to cross-validate learner performance on.

	stratified (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we stratify the folds to ensure an even
distribution of labels for each fold?

	cv_folds (Union[int, skll.types.FoldMapping], default=10) – The number of folds to use for cross-validation, or
a mapping from example IDs to folds.

	cv_seed (int [https://docs.python.org/3/library/functions.html#int], default=123456789) – The value for seeding the random number generator
used to create the random folds. Note that this
seed is only used if either grid_search or
shuffle are set to True.

	grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we do grid search when training each fold?
Note: This will make this take much longer.

	grid_search_folds (Union[int, skll.types.FoldMapping], default=5) – The number of folds to use when doing the
grid search, or a mapping from example IDs to folds.

	grid_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – The number of jobs to run in parallel when doing the
grid search. If None or 0, the number of
grid search folds will be used.

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The name of the objective function to use when
doing the grid search. Must be specified if
grid_search is True.

	output_metrics (List[str [https://docs.python.org/3/library/stdtypes.html#str]], default = []) – List of additional metric names to compute in
addition to the metric used for grid search.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If saving the predictions, this is the
prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

	param_grid (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – The parameter grid to search.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Shuffle examples before splitting into folds for CV.

	save_cv_folds (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether to save the cv fold ids or not?

	save_cv_models (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether to save the cv models or not?

	use_custom_folds_for_grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If cv_folds is a custom dictionary, but grid_search_folds
is not, perhaps due to user oversight, should the same custom
dictionary automatically be used for the inner grid-search
cross-validation?

	Returns:

	A 5-tuple containing the following:

List[skll.types.EvaluateTaskResults]: the confusion matrix, overall accuracy,
per-label PRFs, model parameters, objective function score, and
evaluation metrics (if any) for each fold.

List[float]: the grid search scores for each fold.

List[Dict[str, Any]]: list of dictionaries of grid search CV
results, one per fold, with keys such as “params”, “mean_test_score”,
etc, that are mapped to lists of values associated with each
hyperparameter set combination.

Optional[skll.types.FoldMapping]: dictionary containing the test-fold number
for each id if save_cv_folds is True, otherwise None.

Optional[List[skll.learner.Learner]]: list of learners, one for
each fold if save_cv_models is True, otherwise None.

	Return type:

	skll.types.CrossValidateTaskResults

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If classification labels are not properly encoded as strings.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If grid_search is True but grid_objective is None.

	
evaluate(examples, prediction_prefix=None, append=False, grid_objective=None, output_metrics=[])

	Evaluate the learner on a given dev or test FeatureSet.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to evaluate the performance of the
model on.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If not None, predictions will also be written out to a file with
the name <prediction_prefix>_predictions.tsv. Note that
the prefix can also contain a path.

	append (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should we append the current predictions to the file if it exists?

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The objective function that was used when doing the grid search.

	output_metrics (List[str [https://docs.python.org/3/library/stdtypes.html#str]], default=[]) – List of additional metric names to compute in addition to grid
objective.

	Returns:

	A 6-tuple containing the confusion matrix, the overall accuracy,
the per-label PRFs, the model parameters, the grid search objective
function score, and the additional evaluation metrics, if any.
For regressors, the first two elements in the tuple are None.

	Return type:

	skll.types.EvaluateTaskResults

	
classmethod from_file(learner_path, logger=None)

	Load a saved Learner instance from a file path.

	Parameters:

	
	learner_path (skll.types.PathOrStr) – The path to a saved Learner instance file.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logging object. If None is passed, get logger from __name__.

	Returns:

	The Learner instance loaded from the file.

	Return type:

	skll.learner.Learner

	
get_feature_names_out()

	Return the names of the actual features used by the estimator.

It is possible for some features to get filtered out by the
feature selector which means that the vectorizer is no
longer the correct source for the feature names. This
method takes into account the feature selector and returns
the names of the features that were actually selected to be
used by the estimator.

	Returns:

	names – Names of features actually used by the estimator.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (num_features,)

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If self.feat_vectorizer is either None or a
 sklearn.feature_extraction.FeatureHasher [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher].

	
learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1.]), override_minimum=False)

	Generate learning curves for the learner using the examples.

The learning curves are generated on the training examples
via cross-validation. Adapted from the scikit-learn code for learning
curve generation (cf.``sklearn.model_selection.learning_curve``).

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to generate the learning curve on.

	cv_folds (Union[int, skll.types.FoldMapping], default=10) – The number of folds to use for cross-validation, or a mapping from
example IDs to folds.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the metric function to use when computing the train
and test scores for the learning curve.

	train_sizes (skll.types.LearningCurveSizes, default= numpy.linspace() [https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace] with start=0.1, stop=1.0, num=5) – Relative or absolute numbers of training examples
that will be used to generate the learning curve.
If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is
determined by the selected validation method),
i.e. it has to be within (0, 1]. Otherwise it
is interpreted as absolute sizes of the training
sets. Note that for classification the number of
samples usually have to be big enough to contain
at least one sample from each class.

	override_minimum (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Learning curves can be unreliable for very small sizes
esp. for > 2 labels. If this option is set to True, the
learning curve would be generated even if the number
of example is less 500 along with a warning. If False,
the curve is not generated and an exception is raised instead.

	Returns:

	
	train_scores (List[float]) – The scores for the training set.

	test_scores (List[float]) – The scores on the test set.

	fit_times (List[float]) – The average times taken to fit each model.

	num_examples (List[int]) – The numbers of training examples used to generate the curve.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the number of examples is less than 500.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

	
load(learner_path)

	Replace the current learner instance with a saved learner.

	Parameters:

	learner_path (skll.types.PathOrStr) – The path to a saved learner object file to load.

	Return type:

	None

	
property model

	Return the underlying scikit-learn model.

	
property model_kwargs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return a dictionary of the underlying scikit-learn model’s keyword arguments.

	
property model_params: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Return model parameters (i.e., weights).

Return the weights for a LinearModel (e.g., Ridge),
regression, and liblinear models. If the model was trained using feature
hashing, then names of the form hashed_feature_XX are used instead.

	Returns:

	
	res (Dict[str, Any]) – A dictionary of labeled weights.

	intercept (Dict[str, Any]) – A dictionary of intercept(s).

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the instance does not support model parameters.

	
property model_type

	Return the model type (i.e., the class).

	
predict(examples, prediction_prefix=None, append=False, class_labels=True)

	Generate predictions for the given examples using the learner model.

Return, and optionally, write out predictions on a given FeatureSet
to a file. For regressors, the returned and written-out predictions are
identical. However, for classifiers:

	if class_labels is True, class labels are returned
as well as written out.

	if class_labels is False and the classifier is probabilistic
(i.e., self..probability is True), class probabilities are
returned as well as written out.

	if class_labels is False and the classifier is non-probabilistic
(i.e., self..probability is False), class indices are returned
and class labels are written out.

TL;DR: for regressors, just ignore class_labels. For classfiers,
set it to True to get class labels and False to get class
probabilities.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to predict labels for.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If not None, predictions will also be written out to a file with
the name <prediction_prefix>_predictions.tsv. For classifiers,
the predictions written out are class labels unless the learner is
probabilistic AND class_labels is set to False. Note that
this prefix can also contain a path.

	append (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should we append the current predictions to the file if it exists?

	class_labels (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If False, return either the class probabilities (probabilistic
classifiers) or the class indices (non-probabilistic ones). If
True, return the class labels no matter what. Ignored for
regressors.

	Returns:

	The predictions returned by the Learner instance.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If invalid predictions are being returned or written out.

	MemoryError [https://docs.python.org/3/library/exceptions.html#MemoryError] – If process runs out of memory when converting to dense.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there is a mismatch between the learner vectorizer
 and the test set vectorizer.

	
property probability: bool [https://docs.python.org/3/library/functions.html#bool]

	Return the value of the probability flag.

The flag indicages whether the learner return probabilities of all
labels (instead of just label with highest probability)?

	
save(learner_path)

	Save the Learner instance to a file.

	Parameters:

	learner_path (skll.types.PathOrStr) – The path to save the Learner instance to.

	Return type:

	None

	
train(examples, param_grid=None, grid_search_folds=5, grid_search=True, grid_objective=None, grid_jobs=None, shuffle=False)

	Train model underlying the learner.

Return the grid search score and a dictionary of grid search results.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to use for training.

	param_grid (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]], default=None) – The parameter grid to search through for grid
search. If None, a default parameter grid
will be used.

	grid_search_folds (Union[int, skll.types.FoldMapping], default=5) – The number of folds to use when doing the
grid search, or a mapping from example IDs to folds.

	grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we do grid search?

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The name of the objective function to use when
doing the grid search. Must be specified if
grid_search is True.

	grid_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – The number of jobs to run in parallel when doing the
grid search. If None or 0, the number of
grid search folds will be used.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Shuffle examples (e.g., for grid search CV.)

	Returns:

	
	float – The best grid search objective function score, or 0 if
we’re not doing grid search

	Dict[str, Any] – Dictionary of grid search CV results with keys such as “params”,
“mean_test_score”, etc, that are mapped to lists of values
associated with each hyperparameter set combination, or
None if not doing grid search.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If grid_objective is not a valid grid objective or if
 one is not specified when necessary.

	MemoryError [https://docs.python.org/3/library/exceptions.html#MemoryError] – If process runs out of memory converting training data to dense.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If FeatureHasher is used with MultinomialNB.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
skll.learner.load_custom_learner(custom_learner_path, custom_learner_name)

	Import and load the custom learner object from the given path.

	Parameters:

	
	custom_learner_path (skll.types.PathOrStr) – The path to a custom learner.

	custom_learner_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a custom learner.

	Returns:

	The SKLL learner object loaded from the given path.

	Return type:

	skll.learner.Learner

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the custom learner path does not end in ‘.py’.

VotingLearner Class

A meta-learner class that wraps scikit-learn’s VotingClassifier and VotingRegressor.

	author:

	Nitin Madnani (nmadnani@ets.org)

	organization:

	ETS

	
class skll.learner.voting.VotingLearner(learner_names, voting='hard', custom_learner_path=None, feature_scaling='none', pos_label=None, min_feature_count=1, model_kwargs_list=None, sampler_list=None, sampler_kwargs_list=None, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrap VotingClassifier and VotingRegressor from scikit-learn.

Note that this class does not inherit from the Learner class but rather
uses different Learner instances underlyingly.

	Parameters:

	
	learner_names (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of the learner names that will participate in the voting process.

	voting (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default="hard") – One of “hard” or “soft”. If “hard”, the predicted class labels
are used for majority rule voting. If “soft”, the predicted class
label is based on the argmax of the sums of the predicted
probabilities from each of the underlying learnrs. This parameter
is only relevant for classification.

	custom_learner_path (Optional[skll.types.PathOrStr], default=None) – Path to a Python file containing the definitions of any custom
learners. Any and all custom learners in estimator_names must
be defined in this file. If the custom learner does not inherit
from an already existing scikit-learn estimator, it must explicitly
define an _estimator_type attribute indicating whether it’s a
“classifier” or a “regressor”.

	feature_scaling (str [https://docs.python.org/3/library/stdtypes.html#str], default="none") – How to scale the features, if at all for each estimator. Options are
- “with_std”: scale features using the standard deviation
- “with_mean”: center features using the mean
- “both”: do both scaling as well as centering
- “none”: do neither scaling nor centering

	pos_label (Optional[skll.types.LabelType], default=None) – A string denoting the label of the class to be
treated as the positive class in a binary classification
setting, for each estimator. If None, the class represented
by the label that appears second when sorted is chosen as the
positive class. For example, if the two labels in data are “A”
and “B” and pos_label is not specified, “B” will
be chosen as the positive class.

	min_feature_count (int [https://docs.python.org/3/library/functions.html#int], default=1) – The minimum number of examples a feature must have a nonzero
value in to be included, for each estimator.

	model_kwargs_list (Optional[List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]], default=None) – A list of dictionaries of keyword arguments to pass to the
initializer for each of the estimators. There’s a one-to-one
correspondence between the order of this list and the order
of the learner_names list.

	sampler_list (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], default=None) – The samplers to use for kernel approximation, if desired, for each
estimator. Valid values are:
- “AdditiveChi2Sampler”
- “Nystroem”
- “RBFSampler”
- “SkewedChi2Sampler”
There’s a one-to-one correspondence between the order of this list
and the order of the learner_names list.

	sampler_kwargs_list (Optional[List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]], default=None) – A list of dictionaries of keyword arguments to pass to the
initializer for the specified sampler, one per estimator.
There’s a one-to-one correspondence between the order of this
list and the order of the learner_names list.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logging object. If None is passed, get logger from __name__.

	
cross_validate(examples, stratified=True, cv_folds=10, cv_seed=123456789, grid_search=True, grid_search_folds=5, grid_jobs=None, grid_objective=None, output_metrics=[], prediction_prefix=None, param_grid_list=None, shuffle=False, save_cv_folds=True, save_cv_models=False, individual_predictions=False, use_custom_folds_for_grid_search=True)

	Cross-validate the meta-estimator on the given examples.

We follow essentially the same methodology as in
Learner.cross_validate() - split the examples into
training and testing folds, and then call self.train()
on the training folds and then self.evaluate() on the
test fold. Note that this means that underlying estimators
with different hyperparameters may be used for each fold, as is
the case with Learner.cross_validate().

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to cross-validate learner performance on.

	stratified (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we stratify the folds to ensure an even
distribution of labels for each fold?

	cv_folds (Union[int, skll.types.FoldMapping], default=10) – The number of folds to use for cross-validation, or
a mapping from example IDs to folds.

	cv_seed (int [https://docs.python.org/3/library/functions.html#int], default=123456789) – The value for seeding the random number generator
used to create the random folds. Note that this
seed is only used if either grid_search or
shuffle are set to True.

	grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we do grid search when training each fold?
Note: This will make this take much longer.

	grid_search_folds (Union[int, skll.types.FoldMapping], default=5) – The number of folds to use when doing the grid search, or a mapping
from example IDs to folds.

	grid_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – The number of jobs to run in parallel when doing the grid search.
If None or 0, the number of grid search folds will be used.

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The name of the objective function to use when doing the grid search.
Must be specified if grid_search is True.

	output_metrics (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], default=[]) – List of additional metric names to compute in addition to the metric
used for grid search.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If saving the predictions, this is the prefix that will be used for
the filename. It will be followed by "_predictions.tsv"

	param_grid_list (Optional[List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]], default=None) – The list of parameters grid to search through for grid
search, one for each underlying learner. The order of
the dictionaries should correspond to the order If None,
the default parameter grids will be used for the underlying
estimators.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Shuffle examples before splitting into folds for CV.

	save_cv_folds (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Whether to save the cv fold ids or not?

	save_cv_models (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Whether to save the cv models or not?

	individual_predictions (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Write out the cross-validated predictions from each underlying
learner as well.

	use_custom_folds_for_grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If cv_folds is a custom dictionary, but grid_search_folds
is not, perhaps due to user oversight, should the same custom
dictionary automatically be used for the inner grid-search
cross-validation?

	Returns:

	A 3-tuple containing the following:

List[skll.types.EvaluateTaskResults]: the confusion matrix, overall accuracy,
per-label PRFs, model parameters, objective function score, and
evaluation metrics (if any) for each fold.

Optional[skll.types.FoldMapping]: dictionary containing the test-fold number
for each id if save_cv_folds is True, otherwise None.

Optional[List[skll.learner.voting.VotingLearner]]: list of voting
learners, one for each fold if save_cv_models is True,
otherwise None.

	Return type:

	skll.types.CrossValidateTaskResults

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If classification labels are not properly encoded as strings.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If grid_search is True but grid_objective is None.

	
evaluate(examples, prediction_prefix=None, append=False, grid_objective=None, individual_predictions=False, output_metrics=[])

	Evaluate the meta-estimator on a given FeatureSet.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to evaluate the performance of the model on.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If saving the predictions, this is the
prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

	append (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should we append the current predictions to the file if
it exists?

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The objective function used when doing the grid search.

	individual_predictions (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Optionally, write out the predictions from each underlying learner.

	output_metrics (List[str [https://docs.python.org/3/library/stdtypes.html#str]], default=[]) – List of additional metric names to compute in
addition to grid objective.

	Returns:

	The confusion matrix, the overall accuracy, the per-label
PRFs, the model parameters, the grid search objective
function score, and the additional evaluation metrics, if any.

	Return type:

	skll.types.EvaluateTaskResults

	
classmethod from_file(learner_path, logger=None)

	Load a saved VotingLearner instance from a file.

	Parameters:

	
	learner_path (skll.types.PathOrStr) – The path to a saved VotingLearner instance file.

	logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]], default=None) – A logging object. If None is passed, get logger from __name__.

	Returns:

	learner – The VotingLearner instance loaded from the file.

	Return type:

	skll.learner.voting.VotingLearner

	
property learners: List [https://docs.python.org/3/library/typing.html#typing.List][Learner]

	Return the underlying list of learners.

	
learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1.]), override_minimum=False)

	Generate learning curves for the meta-estimator.

Generate learning curves for the voting meta-estimator on the training
examples via cross-validation. Adapted from the scikit-learn code for
learning curve generation (cf.``sklearn.model_selection.learning_curve``).

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to generate the learning curve on.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the metric function to use
when computing the train and test scores
for the learning curve.

	cv_folds (Union[int, skll.types.FoldMapping], default=10) – The number of folds to use for cross-validation, or
a mapping from example IDs to folds.

	train_sizes (skll.types.LearningCurveSizes, default= numpy.linspace() [https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace] with start=0.1, stop=1.0, num=5) – Relative or absolute numbers of training examples
that will be used to generate the learning curve.
If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is
determined by the selected validation method),
i.e. it has to be within (0, 1]. Otherwise it
is interpreted as absolute sizes of the training
sets. Note that for classification the number of
samples usually have to be big enough to contain
at least one sample from each class.

	override_minimum (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Learning curves can be unreliable for very small sizes
esp. for > 2 labels. If this option is set to True, the
learning curve would be generated even if the number
of example is less 500 along with a warning. If False,
the curve is not generated and an exception is raised instead.

	Returns:

	
	train_scores (List[float]) – The scores for the training set.

	test_scores (List[float]) – The scores on the test set.

	fit_times (List[float]) – The average times taken to fit each model.

	num_examples (List[int]) – The numbers of training examples used to generate the curve.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the number of examples is less than 500.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

	
property model

	Return underlying scikit-learn meta-estimator model.

	
property model_type

	Return meta-estimator model type (i.e., the class).

	
predict(examples, prediction_prefix=None, append=False, class_labels=True, individual_predictions=False)

	Generate predictions with meta-estimator.

Compute the predictions from the meta-estimator and, optionally, the
underlying estimators on given FeatureSet. The predictions are
also written to disk if prediction_prefix is not None.

For regressors, the returned and written-out predictions are identical.
However, for classifiers:

	if class_labels is True, class labels are returned as well as
written out.

	if class_labels is False and the classifier is probabilistic
(i.e., self.probability is True), class probabilities are
returned as well as written out.

	if class_labels is False and the classifier is non-probabilistic
(i.e., self..probability is False), class indices are returned
and class labels are written out. This option is generally only
meant for SKLL-internal use.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to predict labels for.

	prediction_prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – If saving the predictions, this is the prefix that will be used for
the filename. It will be followed by "_predictions.tsv"

	append (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Should we append the current predictions to the file if it exists?

	class_labels (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – For classifier, should we convert class indices to their (str) labels
for the returned array? Note that class labels are always written out
to disk.

	individual_predictions (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Return (and, optionally, write out) the predictions from each
underlying learner.

	Returns:

	The first element is the array of predictions returned by the
meta-estimator and the second is an optional dictionary with the
name of each underlying learner as the key and the array of its
predictions as the value. The second element is None if
individual_predictions is set to False.

	Return type:

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]]

	
save(learner_path)

	Save the VotingLearner instance to a file.

	Parameters:

	learner_path (skll.types.PathOrStr) – The path to save the VotingLearner instance to.

	Return type:

	None

	
train(examples, param_grid_list=None, grid_search_folds=5, grid_search=True, grid_objective=None, grid_jobs=None, shuffle=False)

	Train the voting meta-estimator.

First, we train each of the underlying estimators (represented by
a skll Learner), possibly with grid search. Then, we instantiate
a VotingClassifier or VotingRegressor as appropriate with the
scikit-learn Pipeline stored in the pipeline attribute
of each trained Learner instance as the estimator. Finally,
we call fit() on the VotingClassifier or VotingRegressor
instance. We follow this process because it allows us to use grid
search to find good hyperparameter values for our underlying learners
before passing them to the meta-estimator AND because it allows us to
use SKLL featuresets and do all of the same pre-processing when
doing inference.

The trained meta-estimator is saved in the _model attribute.
Nothing is returned.

	Parameters:

	
	examples (skll.data.featureset.FeatureSet) – The FeatureSet instance to use for training.

	param_grid_list (Optional[List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]], default=None) – The list of parameter grids to search through for grid
search, one for each underlying learner. The order of
the dictionaries should correspond to the order in
which the underlying estimators were specified when the
VotingLearner was instantiated. If None, the default
parameter grids will be used for the underlying estimators.

	grid_search_folds (Union[int, skll.types.FoldMapping], default=5) – The number of folds to use when doing the grid search
for each of the underlying learners, or a mapping from
example IDs to folds.

	grid_search (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – Should we use grid search when training each underlying learner?

	grid_objective (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The name of the objective function to use when
doing the grid search for each underlying learner.
Must be specified if grid_search is True.

	grid_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]], default=None) – The number of jobs to run in parallel when doing the
grid search for each underlying learner. If None or 0,
the number of grid search folds will be used.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – Shuffle examples (e.g., for grid search CV.)

	Return type:

	None

metrics Module

Metrics that can be used to evaluate the performance of learners.

	author:

	Nitin Madnani (nmadnani@ets.org)

	author:

	Michael Heilman (mheilman@ets.org)

	author:

	Dan Blanchard (dblanchard@ets.org)

	organization:

	ETS

	
skll.metrics.correlation(y_true, y_pred, corr_type='pearson')

	Calculate given correlation type between y_true and y_pred.

y_pred can be multi-dimensional. If y_pred is 1-dimensional, it
may either contain probabilities, most-likely classification labels, or
regressor predictions. In that case, we simply return the correlation
between y_true and y_pred. If y_pred is multi-dimensional,
it contains probabilties for multiple classes in which case, we infer the
most likely labels and then compute the correlation between those and
y_true.

	Parameters:

	
	y_true (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The true/actual/gold labels for the data.

	y_pred (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The predicted/observed labels for the data.

	corr_type (str [https://docs.python.org/3/library/stdtypes.html#str], default="pearson") – Which type of correlation to compute. Possible
choices are “pearson”, “spearman”, and “kendall_tau”.

	Returns:

	correlation value if well-defined, else 0.0

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
skll.metrics.f1_score_least_frequent(y_true, y_pred)

	Calculate F1 score of the least frequent label/class.

	Parameters:

	
	y_true (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The true/actual/gold labels for the data.

	y_pred (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The predicted/observed labels for the data.

	Returns:

	F1 score of the least frequent label.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
skll.metrics.kappa(y_true, y_pred, weights=None, allow_off_by_one=False)

	Calculate the kappa inter-rater agreement.

The agreement is calculated between the gold standard and the predicted
ratings. Potential values range from -1 (representing complete disagreement)
to 1 (representing complete agreement). A kappa value of 0 is expected if
all agreement is due to chance.

In the course of calculating kappa, all items in y_true and y_pred will
first be converted to floats and then rounded to integers.

It is assumed that y_true and y_pred contain the complete range of possible
ratings.

This function contains a combination of code from yorchopolis’s kappa-stats
and Ben Hamner’s Metrics projects on Github.

	Parameters:

	
	y_true (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The true/actual/gold labels for the data.

	y_pred (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The predicted/observed labels for the data.

	weights (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], default=None) – Specifies the weight matrix for the calculation.
Possible values are: None (unweighted-kappa), "quadratic"
(quadratically weighted kappa), "linear" (linearly weighted kappa),
and a two-dimensional numpy array (a custom matrix of weights). Each
weight in this array corresponds to the \(w_{ij}\) values in the
Wikipedia description of how to calculate weighted Cohen’s kappa.

	allow_off_by_one (bool [https://docs.python.org/3/library/functions.html#bool], default=False) – If true, ratings that are off by one are counted as
equal, and all other differences are reduced by
one. For example, 1 and 2 will be considered to be
equal, whereas 1 and 3 will have a difference of 1
for when building the weights matrix.

	Returns:

	The weighted or unweighted kappa score.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Raises:

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If y_true != y_pred.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If labels cannot be converted to int.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If invalid weight scheme.

	
skll.metrics.register_custom_metric(custom_metric_path, custom_metric_name)

	Import, load, and register the custom metric function from the given path.

	Parameters:

	
	custom_metric_path (skll.types.PathOrStr) – The path to a custom metric.

	custom_metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom metric function to load. This function must take
only two array-like arguments: the true labels and the predictions,
in that order.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the custom metric path does not end in ‘.py’.

	NameError [https://docs.python.org/3/library/exceptions.html#NameError] – If the name of the custom metric file conflicts
 with an already existing attribute in skll.metrics
 or if the custom metric name conflicts with a scikit-learn
 or SKLL metric.

	
skll.metrics.use_score_func(func_name, y_true, y_pred)

	Call the given scoring function.

This takes care of handling keyword arguments that were pre-specified
when creating the scorer. This applies any sign-flipping that was
specified by make_scorer() when the scorer was created.

	Parameters:

	
	func_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the objective function to use.

	y_true (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The true/actual/gold labels for the data.

	y_pred (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The predicted/observed labels for the data.

	Returns:

	The scored result from the given scorer.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

utils Package

Various useful constants defining groups of evaluation metrics.

	
skll.utils.constants.CLASSIFICATION_ONLY_METRICS = {'accuracy', 'average_precision', 'balanced_accuracy', 'f05', 'f05_score_macro', 'f05_score_micro', 'f05_score_weighted', 'f1', 'f1_score_least_frequent', 'f1_score_macro', 'f1_score_micro', 'f1_score_weighted', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_weighted', 'neg_log_loss', 'precision', 'precision_macro', 'precision_micro', 'precision_weighted', 'recall', 'recall_macro', 'recall_micro', 'recall_weighted', 'roc_auc'}

	Set of evaluation metrics only used for classification tasks

	
skll.utils.constants.CORRELATION_METRICS = {'kendall_tau', 'pearson', 'spearman'}

	Set of evaluation metrics based on correlation

	
skll.utils.constants.PROBABILISTIC_METRICS = frozenset({'average_precision', 'neg_log_loss', 'roc_auc'})

	Set of evaluation metrics that can use prediction probabilities

	
skll.utils.constants.REGRESSION_ONLY_METRICS = {'explained_variance', 'max_error', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_root_mean_squared_error', 'r2'}

	Set of evaluation metrics only used for regression tasks

	
skll.utils.constants.UNWEIGHTED_KAPPA_METRICS = {'unweighted_kappa', 'uwk_off_by_one'}

	Set of unweighted kappa agreement metrics

	
skll.utils.constants.WEIGHTED_KAPPA_METRICS = {'linear_weighted_kappa', 'lwk_off_by_one', 'quadratic_weighted_kappa', 'qwk_off_by_one'}

	Set of weighed kappa agreement metrics

A useful logging function for SKLL developers

	
skll.utils.logging.get_skll_logger(name, filepath=None, log_level=20)

	Create and return logger instances appropriate for use in SKLL code.

These logger instances can log to both STDERR as well as a file. This
function will try to reuse any previously created logger based on the
given name and filepath.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to be used for the logger.

	filepath (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], default=None) – The file to be used for the logger via a FileHandler.
Default: None in which case no file is attached to the
logger.

	log_level (int [https://docs.python.org/3/library/functions.html#int], default=logging.INFO) – The level for logging messages

	Returns:

	logger – A Logger instance.

	Return type:

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

types [https://docs.python.org/3/library/types.html#module-types] Module

The skll.types module contains custom type aliases that are used throughout
the SKLL code in type hints and docstrings.

	
skll.types.ClassMap

	alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

Class map that maps new labels (string) to list of old labels (list of string).

	
skll.types.ConfusionMatrix

	alias of List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

Confusion matrix represented by a list of list of integers.

	
skll.types.FeatureDict

	alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

Feature dictionary that maps a string to other dictionaries or other objects.

	
skll.types.FeatureDictList

	alias of List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

List of feature dictionaries.

	
skll.types.FeaturesetIterator

	alias of Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple[skll.data.FeatureSet, skll.data.FeatureSet]]

An iterator over two FeatureSets, usually test and train.

	
skll.types.FoldMapping

	alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]

Mapping from example ID to fold ID; the example ID may be a float or a string
but the fold ID is always a string.

	
skll.types.IdType

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]

A float or a string; this is useful or SKLL IDs that can be both.

	
skll.types.IndexIterator

	alias of Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

Generator over two numpy arrays containing indices - usually for train and test
data.

	
skll.types.LabelType

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

A float, integer, or a string; this is useful for SKLL labels that can be any
of them.

	
skll.types.LearningCurveSizes

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

Learning curve sizes can either be a numpy array (or a list) containing
floats or integers.

	
skll.types.FeatGenerator

	alias of Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple[Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

Generator that yields a 3-tuple containing:

	An example ID (float or string).

	A label (integer, float, or string).

	A feature dictionary.

	
skll.types.PathOrStr

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]]

A string path or Path object.

	
skll.types.SparseFeatureMatrix

	alias of csr_matrix

A scipy sparse matrix to hold SKLL features in FeatureSets.

	
skll.types.ComputeEvalMetricsResults

	alias of Tuple[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]]

Learner evaluate task results 5-tuple containing:

	The confusion matrix for a classifier, None for a regressor.

	Accuracy for a classifier, None for a regressor.

	The dictionary of results.

	Score for the grid objective, None if no grid search was performed.

	The dictionary of scores for any additional metrics.

	
skll.types.EvaluateTaskResults

	alias of Tuple[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]]

Learner evaluate task results 6-tuple containing:

	The confusion matrix for a classifier, None for a regressor.

	Accuracy for a classifier, None for a regressor.

	The dictionary of results.

	The dictionary containing the model parameters.

	Score for the grid objective, None if no grid search

	The dictionary of score for any additional metrics.

	
skll.types.CrossValidateTaskResults

	alias of Tuple[List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]]], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]], List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][skll.learner.Learner]]]

Learner cross-validate task results 5-tuple containing:

	The confusion matrix, overall accuracy, per-label precision/recall/F1, model
parameters, objective function score, and evaluation metrics (if any) for
each fold.

	The grid search scores for each fold.

	The list of dictionaries of grid search CV results, one per fold, with keys
such as “params”, “mean_test_score”, etc, that are mapped to lists of values
associated with each combination of hyper-parameters.

	The dictionary containing the test-fold number for each, None if folds
were not saved.

	The list of learners, one for each fold, None if the models were not
saved.

	
skll.types.VotingCrossValidateTaskResults

	alias of Tuple[List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][skll.learner.voting.VotingLearner]]]

Voting Learner cross-validate task results 3-tuple containing:

	The confusion matrix, overall accuracy, per-label precision/recall/F1, model
parameters, objective function score, and evaluation metrics (if any) for
each fold.

	The dictionary containing the test-fold number for each, None if folds
were not saved.

	The list of voting learners, one for each fold, None if the models were
not saved.

Contributing

Thank you for your interest in contributing to SKLL! We welcome any and all contributions.

Guidelines

The SKLL contribution guidelines can be found in our Github repository
here [https://github.com/EducationalTestingService/skll/blob/main/CONTRIBUTING.md]. We strongly encourage all SKLL contributions to follow these guidelines.

SKLL Code Overview

This section will help you get oriented with the SKLL codebase by
describing how it is organized, the various SKLL entry points into the
code, and what the general code flow looks like for each entry point.

Organization

The main Python code for the SKLL package lives inside the skll sub-directory of the repository. It contains the following files and sub-directories:

	config/ [https://github.com/EducationalTestingService/skll/tree/main/skll/config] : Code to parse SKLL experiment configuration files.

	experiments/ [https://github.com/EducationalTestingService/skll/tree/main/skll/experiments] : Code that is related to creating and running SKLL experiments. It also contains code that collects the various evaluation metrics and predictions for each SKLL experiment and writes them out to disk.

	learner/ [https://github.com/EducationalTestingService/skll/tree/main/skll/learner] : Code for the Learner [https://github.com/EducationalTestingService/skll/blob/main/skll/learner/__init__.py] and VotingLearner [https://github.com/EducationalTestingService/skll/blob/main/skll/learner/voting.py] classes. The former is instantiated for all learner names specified in the experiment configuration file except VotingClassifier and VotingRegressor for which the latter is instantiated instead.

	metrics.py [https://github.com/EducationalTestingService/skll/blob/main/skll/metrics.py] : Code for any custom metrics that are not in sklearn.metrics, e.g., kappa, kendall_tau, spearman, etc. This module also contains the code that powers user-defined custom metrics.

	data/ [https://github.com/EducationalTestingService/skll/tree/main/skll/data]

	__init__.py [https://github.com/EducationalTestingService/skll/blob/main/skll/data/__init__.py] : Code used to initialize the skll.data Python package.

	featureset.py [https://github.com/EducationalTestingService/skll/blob/main/skll/data/featureset.py] : Code for the FeatureSet class metadata for a given set of instances.

	readers.py [https://github.com/EducationalTestingService/skll/blob/main/skll/data/readers.py] : Code for classes that can read various file formats and create FeatureSet objects from them.

	writers.py [https://github.com/EducationalTestingService/skll/blob/main/skll/data/writers.py] : Code for classes that can write FeatureSet objects to files on disk in various formats.

	dict_vectorizer.py [https://github.com/EducationalTestingService/skll/blob/main/skll/data/dict_vectorizer.py] : Code for a DictVectorizer class that subclasses sklearn.feature_extraction.DictVectorizer to add an __eq__() method that we need for vectorizer equality.

	utils/ [https://github.com/EducationalTestingService/skll/tree/main/skll/utils] : Code for different utility scripts, functions, and classes used throughout SKLL. The most important ones are the command line scripts in the utils.commandline submodule.

	compute_eval_from_predictions.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/compute_eval_from_predictions.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#compute-eval-from-predictions].

	filter_features.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/filter_features.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#filter-features].

	generate_predictions.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/generate_predictions.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#generate-predictions].

	join_features.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/join_features.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#join-features].

	plot_learning_curves.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/plot_learning_curves.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#plot-learning-curves].

	print_model_weights.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/print_model_weights.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#print-model-weights].

	run_experiment.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/run_experiment.py] : See documentation [https://skll.readthedocs.io/en/latest/run_experiment.html#using-run-experiment].

	skll_convert.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/skll_convert.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#skll-convert].

	summarize_results.py [https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/summarize_results.py] : See documentation [https://skll.readthedocs.io/en/latest/utilities.html#summarize-results].

	version.py [https://github.com/EducationalTestingService/skll/blob/main/skll/version.py] : Code to define the SKLL version. Only changed for new releases.

	tests/ [https://github.com/EducationalTestingService/skll/tree/main/tests]
- test_*.py : These files contain the code for the unit tests and regression tests.

Entry Points & Workflow

There are three main entry points into the SKLL codebase:

	Experiment configuration files. The primary way to interact with SKLL
is by writing configuration files and then passing it to the
run_experiment [https://skll.readthedocs.io/en/latest/run_experiment.html#using-run-experiment] script. When you run the command
run_experiment <config_file>, the following happens (at a high level):

	the configuration file is handed off to the run_configuration() [https://github.com/EducationalTestingService/skll/blob/main/skll/experiments/__init__.py#L613] function in experiments.py.

	a SKLLConfigParser [https://github.com/EducationalTestingService/skll/blob/main/skll/config/__init__.py#L44] object is instantiated from config.py that parses all of the relevant fields out of the given configuration file.

	the configuration fields are then passed to the _classify_featureset() [https://github.com/EducationalTestingService/skll/blob/main/skll/experiments/__init__.py#L65] function in experiments.py which instantiates the learners (using code from learner.py), the featuresets (using code from reader.py & featureset.py), and runs the experiments, collects the results, and writes them out to disk.

	SKLL API. Another way to interact with SKLL is via the SKLL API directly in your Python code rather than using configuration files. For example, you could use the Learner.from_file() [https://github.com/EducationalTestingService/skll/blob/main/skll/learner/__init__.py#L384] or VotingLearner.from_file() [https://github.com/EducationalTestingService/skll/blob/main/skll/learner/voting.py#L243] methods to load saved models of those types from disk and make predictions on new data. The documentation for the SKLL API can be found here [https://skll.readthedocs.io/en/latest/api.html].

	Utility scripts. The scripts listed in the section above under utils are also entry points into the SKLL code. These scripts are convenient wrappers that use the SKLL API for commonly used tasks, e.g., generating predictions on new data from an already trained model.

Internal Documentation

	Release Process

Release Process

This document is only meant for the project administrators, not users and developers.

	Create a release branch release/XX on GitHub.

	In the release branch:

	Update the version numbers in version.py.

	Make sure that requirements.txt only has the actual dependencies that
are needed to run SKLL. Any dependencies needed only for
development/testing (e.g., sphinx, nose2 etc.) should be moved to
requirements.dev. This means that requirements.txt must be a strict
subset of requirements.dev.

	Make sure the versions in doc/requirements.txt are up to date with
requirements.txt and only contains the dependencies needed to build the
documentation.

	Make sure .readthedocs.yml is still accurate.

	Update the conda recipe.

	Update the documentation with any new features or details about changes.

	Run make linkcheck on the documentation and fix any redirected/broken links.

	Update the README and this release documentation, if necessary.

	Build and upload the conda packages by following instructions in conda-recipe/README.md.

	Build the PyPI source distribution using python setup.py sdist build.

	Upload the source distribution to TestPyPI using twine upload --repository testpypi dist/*. You will need to have the twine package installed and set up your $HOME/.pypirc correctly. See details here [https://packaging.python.org/en/latest/guides/using-testpypi/].

	Test the conda package by creating a new environment on different platforms with this package installed and then running SKLL examples or tests from a SKLL working copy. If the package works, then move on to the next step. If it doesn’t, figure out why and rebuild and re-upload the package.

	Test the TestPyPI package by installing it as follows:

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple skll

	Then run some SKLL examples or tests from a SKLL working copy. If the TestPyPI package works, then move on to the next step. If it doesn’t, figure out why and rebuild and re-upload the package.

	Create pull requests on the skll-conda-tester [https://github.com/EducationalTestingService/skll-conda-tester/] and skll-pip-tester [https://github.com/EducationalTestingService/skll-pip-tester/] repositories to test the conda and TestPyPI packages on Linux and Windows.

	Draft a release on GitHub while the Linux and Windows package tester builds are running.

	Once both builds have passed, make a pull request with the release branch to be merged into main and request code review.

	Once the build for the PR passes and the reviewers approve, merge the release branch into main.

	Upload source and wheel packages to PyPI using python setup.py sdist upload and python setup.py bdist_wheel upload

	Make sure that the ReadTheDocs build for main passes.

	Tag the latest commit in main with the appropriate release tag and publish the release on GitHub.

	Send an email around at ETS announcing the release and the changes.

	Post release announcement on Twitter/LinkedIn.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 skll	

 	
 	
 skll.data.featureset	

 	
 	
 skll.learner	

 	
 	
 skll.learner.voting	

 	
 	
 skll.metrics	

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --ablation

 	run_experiment command line option

 	summarize_results command line option

 	
 --ablation_all

 	run_experiment command line option

 	
 --arff_regression

 	skll_convert command line option

 	
 --arff_relation

 	skll_convert command line option

 	
 --drop-blanks

 	filter_features command line option

 	
 --feature

 	filter_features command line option

 	
 --id

 	filter_features command line option

 	
 --id_col

 	filter_features command line option

 	generate_predictions command line option

 	
 --input

 	filter_features command line option

 	
 --inverse

 	filter_features command line option

 	
 --k

 	print_model_weights command line option

 	
 --keep-models

 	run_experiment command line option

 	
 --label

 	filter_features command line option

 	
 --label_col

 	filter_features command line option

 	generate_predictions command line option

 	join_features command line option

 	skll_convert command line option

 	
 --local

 	run_experiment command line option

 	
 --machines

 	run_experiment command line option

 	
 --no_labels

 	skll_convert command line option

 	
 --output

 	filter_features command line option

 	
 --output_file

 	generate_predictions command line option

 	
 --predict_labels

 	generate_predictions command line option

 	
 --queue

 	run_experiment command line option

 	
 --quiet

 	filter_features command line option

 	generate_predictions command line option

 	join_features command line option

 	skll_convert command line option

 	
 --replace-blanks-with

 	filter_features command line option

 	
 --resume

 	run_experiment command line option

 	
 --reuse_libsvm_map

 	skll_convert command line option

 	
 --sign

 	print_model_weights command line option

 	
 	
 --sort_by_labels

 	print_model_weights command line option

 	
 --threshold

 	generate_predictions command line option

 	
 --verbose

 	run_experiment command line option

 	
 --version

 	compute_eval_from_predictions command line option

 	filter_features command line option

 	generate_predictions command line option

 	join_features command line option

 	print_model_weights command line option

 	run_experiment command line option

 	skll_convert command line option

 	summarize_results command line option

 	
 -A

 	run_experiment command line option

 	
 -a

 	run_experiment command line option

 	summarize_results command line option

 	
 -db

 	filter_features command line option

 	
 -f

 	filter_features command line option

 	
 -I

 	filter_features command line option

 	
 -i

 	filter_features command line option

 	generate_predictions command line option

 	
 -k

 	run_experiment command line option

 	
 -L

 	filter_features command line option

 	
 -l

 	filter_features command line option

 	generate_predictions command line option

 	join_features command line option

 	run_experiment command line option

 	skll_convert command line option

 	
 -m

 	run_experiment command line option

 	
 -o

 	filter_features command line option

 	generate_predictions command line option

 	
 -p

 	generate_predictions command line option

 	
 -q

 	filter_features command line option

 	generate_predictions command line option

 	join_features command line option

 	run_experiment command line option

 	skll_convert command line option

 	
 -r

 	run_experiment command line option

 	
 -rb

 	filter_features command line option

 	
 -t

 	generate_predictions command line option

 	
 -v

 	run_experiment command line option

A

 	
 	ARFFReader (class in skll.data.readers)

 	
 	ARFFWriter (class in skll.data.writers)

C

 	
 	CLASSIFICATION_ONLY_METRICS (in module skll.utils.constants)

 	ClassMap (in module skll.types)

 	
 compute_eval_from_predictions command line option

 	--version

 	examples_file

 	metric_names

 	predictions_file

 	ComputeEvalMetricsResults (in module skll.types)

 	
 	ConfusionMatrix (in module skll.types)

 	correlation() (in module skll.metrics)

 	CORRELATION_METRICS (in module skll.utils.constants)

 	cross_validate() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	CrossValidateTaskResults (in module skll.types)

 	CSVReader (class in skll.data.readers)

 	CSVWriter (class in skll.data.writers)

D

 	
 	DictListReader (class in skll.data.readers)

E

 	
 	evaluate() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	
 	EvaluateTaskResults (in module skll.types)

 	
 examples_file

 	compute_eval_from_predictions command line option

F

 	
 	f1_score_least_frequent() (in module skll.metrics)

 	FeatGenerator (in module skll.types)

 	FeatureDict (in module skll.types)

 	FeatureDictList (in module skll.types)

 	FeatureSet (class in skll.data.featureset)

 	FeaturesetIterator (in module skll.types)

 	filter() (skll.data.featureset.FeatureSet method)

 	
 filter_features command line option

 	--drop-blanks

 	--feature

 	--id

 	--id_col

 	--input

 	--inverse

 	--label

 	--label_col

 	--output

 	--quiet

 	--replace-blanks-with

 	--version

 	-db

 	-f

 	-i

 	-I

 	-L

 	-l

 	-o

 	-q

 	-rb

 	
 	filtered_iter() (skll.data.featureset.FeatureSet method)

 	fix_json() (in module skll.config)

 	FoldMapping (in module skll.types)

 	for_path() (skll.data.readers.Reader class method)

 	(skll.data.writers.Writer class method)

 	from_data_frame() (skll.data.featureset.FeatureSet static method)

 	from_file() (skll.learner.Learner class method)

 	(skll.learner.voting.VotingLearner class method)

G

 	
 	
 generate_predictions command line option

 	--id_col

 	--label_col

 	--output_file

 	--predict_labels

 	--quiet

 	--threshold

 	--version

 	-i

 	-l

 	-o

 	-p

 	-q

 	-t

 	input_file(s)

 	model_file

 	
 	get_feature_names_out() (skll.learner.Learner method)

 	get_skll_logger() (in module skll.utils.logging)

H

 	
 	has_labels (skll.data.featureset.FeatureSet property)

I

 	
 	IdType (in module skll.types)

 	IndexIterator (in module skll.types)

 	
 infile

 	join_features command line option

 	skll_convert command line option

 	
 	
 input_file(s)

 	generate_predictions command line option

J

 	
 	
 join_features command line option

 	--label_col

 	--quiet

 	--version

 	-l

 	-q

 	infile

 	outfile

 	
 	
 json_file

 	summarize_results command line option

K

 	
 	kappa() (in module skll.metrics)

L

 	
 	LabelType (in module skll.types)

 	Learner (class in skll.learner)

 	learners (skll.learner.voting.VotingLearner property)

 	learning_curve() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	LearningCurveSizes (in module skll.types)

 	
 	LibSVMReader (class in skll.data.readers)

 	LibSVMWriter (class in skll.data.writers)

 	load() (skll.learner.Learner method)

 	load_custom_learner() (in module skll.learner)

 	load_cv_folds() (in module skll.config)

 	locate_file() (in module skll.config)

M

 	
 	
 metric_names

 	compute_eval_from_predictions command line option

 	model (skll.learner.Learner property)

 	(skll.learner.voting.VotingLearner property)

 	
 model_file

 	generate_predictions command line option

 	print_model_weights command line option

 	model_kwargs (skll.learner.Learner property)

 	
 	model_params (skll.learner.Learner property)

 	model_type (skll.learner.Learner property)

 	(skll.learner.voting.VotingLearner property)

 	
 module

 	skll.data.featureset

 	skll.learner

 	skll.learner.voting

 	skll.metrics

N

 	
 	NDJReader (class in skll.data.readers)

 	
 	NDJWriter (class in skll.data.writers)

O

 	
 	
 outfile

 	join_features command line option

 	skll_convert command line option

 	
 	
 output_dir

 	plot_learning_curves command line option

P

 	
 	PathOrStr (in module skll.types)

 	
 plot_learning_curves command line option

 	output_dir

 	tsv_file

 	predict() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	
 predictions_file

 	compute_eval_from_predictions command line option

 	
 	
 print_model_weights command line option

 	--k

 	--sign

 	--sort_by_labels

 	--version

 	model_file

 	PROBABILISTIC_METRICS (in module skll.utils.constants)

 	probability (skll.learner.Learner property)

R

 	
 	read() (skll.data.readers.DictListReader method)

 	(skll.data.readers.Reader method)

 	Reader (class in skll.data.readers)

 	register_custom_metric() (in module skll.metrics)

 	REGRESSION_ONLY_METRICS (in module skll.utils.constants)

 	
 run_experiment command line option

 	--ablation

 	--ablation_all

 	--keep-models

 	--local

 	--machines

 	--queue

 	--resume

 	--verbose

 	--version

 	-a

 	-A

 	-k

 	-l

 	-m

 	-q

 	-r

 	-v

S

 	
 	save() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	
 skll.data.featureset

 	module

 	
 skll.learner

 	module

 	
 skll.learner.voting

 	module

 	
 skll.metrics

 	module

 	
 skll_convert command line option

 	--arff_regression

 	--arff_relation

 	--label_col

 	--no_labels

 	--quiet

 	--reuse_libsvm_map

 	--version

 	-l

 	-q

 	infile

 	outfile

 	
 	SparseFeatureMatrix (in module skll.types)

 	split() (skll.data.featureset.FeatureSet static method)

 	split_with_quotes() (skll.data.readers.ARFFReader static method)

 	
 summarize_results command line option

 	--ablation

 	--version

 	-a

 	json_file

 	summary_file

 	
 summary_file

 	summarize_results command line option

T

 	
 	train() (skll.learner.Learner method)

 	(skll.learner.voting.VotingLearner method)

 	
 tsv_file

 	plot_learning_curves command line option

 	
 	TSVReader (class in skll.data.readers)

 	TSVWriter (class in skll.data.writers)

U

 	
 	UNWEIGHTED_KAPPA_METRICS (in module skll.utils.constants)

 	
 	use_score_func() (in module skll.metrics)

V

 	
 	VotingCrossValidateTaskResults (in module skll.types)

 	
 	VotingLearner (class in skll.learner.voting)

W

 	
 	WEIGHTED_KAPPA_METRICS (in module skll.utils.constants)

 	
 	write() (skll.data.writers.Writer method)

 	Writer (class in skll.data.writers)

 _images/learning_curve.png
accuracy
e o o =
A o o o

©
N

—
o
o

©
~
[&)]

0.50

0.25

0.00

quadratic_weighted_kappa

LogisticRegression
1.0
—t——e—— 08
0.6
0.4

0.2

Training
== Cross-validation
0.0

45 147 250 352 455

1.00

0.75

— "% 1 g5

0.25

0.00

45 147 250 352 455
Training Examples

MultinomialNB

0.8

0.6

0.4

0.2

0.0
45 147 250 352 455

1.00

0.75

0.50

0.25

0.00

45 147 250 352 455
Training Examples

RandomForestClassifier

0.8

0.6
0.4
0.2

0.0
45 147 250 352 455

g —0 100

0.75

o ° 0.50

0.25

0.00

45 147 250 352 455
Training Examples

45

£

45

SvC

147 250 352 455

¥

147 250 352 455
Training Examples

_images/learning_curve_times.png
Fit time (s)

0.4

0.3

0.2

0.1

0.0

LogisticRegression

MultinomialNB

[]

45

\ 4 @ A A L 4

147 250 352 455 45
Training Examples

147 250 352
Training Examples

455

45

RandomForestClassifier

147 250 352
Training Examples

SvC

_ - —ee®
@ . bt

455 45 147 250 352 455

Training Examples

_images/skll.png

_images/spacer.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SciKit-Learn Laboratory (SKLL)

 		
 Installation

 		
 License

 		
 Tutorial

 		
 Workflow

 		
 Titanic Example

 		
 Create virtual environment with SKLL

 		
 Get your data into the correct format

 		
 Create a configuration file for the experiment

 		
 Running your configuration file through run_experiment

 		
 Examine the results

 		
 IRIS Example on Binder

 		
 Running Experiments

 		
 General Workflow

 		
 Feature files

 		
 arff

 		
 csv/tsv

 		
 jsonlines/ndj (Recommended)

 		
 libsvm

 		
 Configuration file fields

 		
 General

 		
 Input

 		
 Tuning

 		
 Output

 		
 Using run_experiment

 		
 Output files

 		
 Log files

 		
 Model files

 		
 Results files

 		
 Prediction files

 		
 Summary file

 		
 Folds file

 		
 Learning curve plots

 		
 Integration with Weights & Biases

 		
 Using Custom Metrics

 		
 Writing Custom Metric Functions

 		
 Using in Configuration Files

 		
 Using via the API

 		
 Utility Scripts

 		
 compute_eval_from_predictions

 		
 Positional Arguments

 		
 Optional Arguments

 		
 filter_features

 		
 Required Arguments

 		
 Optional Arguments

 		
 generate_predictions

 		
 Positional Arguments

 		
 Optional Arguments

 		
 join_features

 		
 Positional Arguments

 		
 Optional Arguments

 		
 plot_learning_curves

 		
 Positional Arguments

 		
 print_model_weights

 		
 Positional Arguments

 		
 Optional Arguments

 		
 skll_convert

 		
 Positional Arguments

 		
 Optional Arguments

 		
 summarize_results

 		
 Positional Arguments

 		
 Optional Arguments

 		
 API Documentation

 		
 Quickstart

 		
 config Package

 		
 fix_json()

 		
 load_cv_folds()

 		
 locate_file()

 		
 data Package

 		
 data.featureset Module

 		
 data.readers Module

 		
 data.writers Module

 		
 experiments Package

 		
 learner Package

 		
 Learner Class

 		
 VotingLearner Class

 		
 metrics Module

 		
 correlation()

 		
 f1_score_least_frequent()

 		
 kappa()

 		
 register_custom_metric()

 		
 use_score_func()

 		
 utils Package

 		
 CLASSIFICATION_ONLY_METRICS

 		
 CORRELATION_METRICS

 		
 PROBABILISTIC_METRICS

 		
 REGRESSION_ONLY_METRICS

 		
 UNWEIGHTED_KAPPA_METRICS

 		
 WEIGHTED_KAPPA_METRICS

 		
 get_skll_logger()

 		
 types Module

 		
 ClassMap

 		
 ConfusionMatrix

 		
 FeatureDict

 		
 FeatureDictList

 		
 FeaturesetIterator

 		
 FoldMapping

 		
 IdType

 		
 IndexIterator

 		
 LabelType

 		
 LearningCurveSizes

 		
 FeatGenerator

 		
 PathOrStr

 		
 SparseFeatureMatrix

 		
 ComputeEvalMetricsResults

 		
 EvaluateTaskResults

 		
 CrossValidateTaskResults

 		
 VotingCrossValidateTaskResults

 		
 Contributing

 		
 Guidelines

 		
 SKLL Code Overview

 		
 Organization

 		
 Entry Points & Workflow

 		
 Internal Documentation

 		
 Release Process

